# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. from __future__ import print_function import os import numpy as np import random import shutil import time import unittest import copy import logging import paddle import paddle.fluid as fluid from paddle.fluid.contrib.slim.quantization import * from paddle.fluid.log_helper import get_logger from paddle.dataset.common import download from imperative_test_utils import fix_model_dict, ImperativeLenet _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') class TestImperativePTQ(unittest.TestCase): """ """ @classmethod def setUpClass(cls): timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) cls.root_path = os.path.join(os.getcwd(), "imperative_ptq_" + timestamp) cls.save_path = os.path.join(cls.root_path, "model") cls.download_path = 'dygraph_int8/download' cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + cls.download_path) cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz" cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb" seed = 1 np.random.seed(seed) paddle.static.default_main_program().random_seed = seed paddle.static.default_startup_program().random_seed = seed @classmethod def tearDownClass(cls): try: pass # shutil.rmtree(cls.root_path) except Exception as e: print("Failed to delete {} due to {}".format(cls.root_path, str(e))) def cache_unzipping(self, target_folder, zip_path): if not os.path.exists(target_folder): cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) os.system(cmd) def download_model(self, data_url, data_md5, folder_name): download(data_url, self.download_path, data_md5) file_name = data_url.split('/')[-1] zip_path = os.path.join(self.cache_folder, file_name) print('Data is downloaded at {0}'.format(zip_path)) data_cache_folder = os.path.join(self.cache_folder, folder_name) self.cache_unzipping(data_cache_folder, zip_path) return data_cache_folder def set_vars(self): config = PTQConfig(AbsmaxQuantizer(), AbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 0.95 # the input, output and weight thresholds of quantized op self.gt_thresholds = { 'conv2d_0': [[1.0], [0.37673383951187134], [0.10933732241392136]], 'batch_norm2d_0': [[0.37673383951187134], [0.44249194860458374]], 're_lu_0': [[0.44249194860458374], [0.25804123282432556]], 'max_pool2d_0': [[0.25804123282432556], [0.25804123282432556]], 'linear_0': [[1.7058950662612915], [14.405526161193848], [0.4373355209827423]], 'add_0': [[1.7058950662612915, 0.0], [1.7058950662612915]], } def model_test(self, model, batch_num=-1, batch_size=8): model.eval() test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) eval_acc_top1_list = [] for batch_id, data in enumerate(test_reader()): x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype('float32') y_data = np.array( [x[1] for x in data]).astype('int64').reshape(-1, 1) img = paddle.to_tensor(x_data) label = paddle.to_tensor(y_data) out = model(img) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) eval_acc_top1_list.append(float(acc_top1.numpy())) if batch_id % 50 == 0: _logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format( batch_id, acc_top1.numpy(), acc_top5.numpy())) if batch_num > 0 and batch_id + 1 >= batch_num: break eval_acc_top1 = sum(eval_acc_top1_list) / len(eval_acc_top1_list) return eval_acc_top1 def program_test(self, program_path, batch_num=-1, batch_size=8): exe = paddle.static.Executor(paddle.CPUPlace()) [inference_program, feed_target_names, fetch_targets] = ( paddle.static.load_inference_model(program_path, exe)) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) top1_correct_num = 0. total_num = 0. for batch_id, data in enumerate(test_reader()): img = np.array([x[0].reshape(1, 28, 28) for x in data]).astype('float32') label = np.array([x[1] for x in data]).astype('int64') feed = {feed_target_names[0]: img} results = exe.run(inference_program, feed=feed, fetch_list=fetch_targets) pred = np.argmax(results[0], axis=1) top1_correct_num += np.sum(np.equal(pred, label)) total_num += len(img) if total_num % 50 == 49: _logger.info("Test | Test num {}: acc1 = {:}".format( total_num, top1_correct_num / total_num)) if batch_num > 0 and batch_id + 1 >= batch_num: break return top1_correct_num / total_num def test_ptq(self): start_time = time.time() self.set_vars() # Load model params_path = self.download_model(self.lenet_url, self.lenet_md5, "lenet") params_path += "/lenet_pretrained/lenet.pdparams" model = ImperativeLenet() model_state_dict = paddle.load(params_path) model.set_state_dict(model_state_dict) # Quantize, calibrate and save quant_model = self.ptq.quantize(model) before_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) input_spec = [ paddle.static.InputSpec( shape=[None, 1, 28, 28], dtype='float32') ] self.ptq.save_quantized_model( model=quant_model, path=self.save_path, input_spec=input_spec) print('Quantized model saved in {%s}' % self.save_path) after_acc_top1 = self.model_test(quant_model, self.batch_num, self.batch_size) paddle.enable_static() infer_acc_top1 = self.program_test(self.save_path, self.batch_num, self.batch_size) paddle.disable_static() # Check print('Before converted acc_top1: %s' % before_acc_top1) print('After converted acc_top1: %s' % after_acc_top1) print('Infer acc_top1: %s' % infer_acc_top1) self.assertTrue( after_acc_top1 >= self.eval_acc_top1, msg="The test acc {%f} is less than {%f}." % (after_acc_top1, self.eval_acc_top1)) self.assertTrue( infer_acc_top1 >= after_acc_top1, msg='The acc is lower after converting model.') end_time = time.time() print("total time: %ss \n" % (end_time - start_time)) class TestImperativePTQHist(TestImperativePTQ): def set_vars(self): config = PTQConfig(HistQuantizer(), AbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 0.98 self.gt_thresholds = { 'conv2d_0': [[0.99853515625], [0.35732391771364225], [0.10933732241392136]], 'batch_norm2d_0': [[0.35732391771364225], [0.4291427868761275]], 're_lu_0': [[0.4291427868761275], [0.2359918110742001]], 'max_pool2d_0': [[0.2359918110742001], [0.25665526917146053]], 'linear_0': [[1.7037603475152991], [14.395224522473026], [0.4373355209827423]], 'add_0': [[1.7037603475152991, 0.0], [1.7037603475152991]], } class TestImperativePTQKL(TestImperativePTQ): def set_vars(self): config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer()) self.ptq = ImperativePTQ(config) self.batch_num = 10 self.batch_size = 10 self.eval_acc_top1 = 1.0 conv2d_1_wt_thresholds = [ 0.18116560578346252, 0.17079241573810577, 0.1702047884464264, 0.179476797580719, 0.1454375684261322, 0.22981858253479004 ] self.gt_thresholds = { 'conv2d_0': [[0.99267578125], [0.37695913558696836]], 'conv2d_1': [[0.19189296757394914], [0.24514256547263358], [conv2d_1_wt_thresholds]], 'batch_norm2d_0': [[0.37695913558696836], [0.27462541429440535]], 're_lu_0': [[0.27462541429440535], [0.19189296757394914]], 'max_pool2d_0': [[0.19189296757394914], [0.19189296757394914]], 'linear_0': [[1.2839322163611087], [8.957185942414352]], 'add_0': [[1.2839322163611087, 0.0], [1.2839322163611087]], } if __name__ == '__main__': unittest.main()