# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from . import core import numpy import os import six from six.moves import zip, range, xrange import multiprocessing from .framework import Variable, default_main_program __all__ = ['DataFeeder'] def convert_dtype(dtype): if dtype == core.VarDesc.VarType.FP32: return 'float32' elif dtype == core.VarDesc.VarType.INT64: return 'int64' elif dtype == core.VarDesc.VarType.FP64: return 'float64' elif dtype == core.VarDesc.VarType.FP16: return 'float16' elif dtype == core.VarDesc.VarType.INT32: return 'int32' elif dtype == core.VarDesc.VarType.UINT8: return 'uint8' else: raise ValueError("dtype must be any of [int32, float32, int64, " "float64, uint8]") class DataToLoDTensorConverter(object): def __init__(self, place, lod_level, shape, dtype): self.place = place self.lod_level = lod_level self.shape = shape negtive_count = 0 for s in self.shape: if s < 0: negtive_count += 1 if negtive_count > 1: self.shape = None break self.dtype = convert_dtype(dtype) self._reset() def _reset(self): self.data = [] self.lod = [[] for _ in six.moves.range(self.lod_level)] def feed(self, data): self._feed_impl_(data, self.lod, self.lod_level) def _feed_impl_(self, data, lod, lod_level): if lod_level == 0: self.data.append(data) else: lod[0].append(len(data)) for each_data in data: self._feed_impl_(each_data, lod[1:], lod_level - 1) def _check_shape(self, shape): for s1, s2 in zip(self.shape, shape): if s1 != s2 and s1 >= 0 and s2 >= 0: raise ValueError( "Shape not match. What is defined in data layer is {}, but receive {}". format(self.shape, shape)) def done(self): arr = numpy.array(self.data, dtype=self.dtype) if self.shape: if len(arr.shape) != len(self.shape): try: arr = arr.reshape(self.shape) except ValueError: raise ValueError( "Reshape error. What is defined in data layer is {}, but receive {}" .format(self.shape, arr.shape)) t = core.LoDTensor() t.set(arr, self.place) if self.lod_level > 0: t.set_recursive_sequence_lengths(self.lod) self._reset() return t class BatchedTensorProvider(object): def __init__(self, feed_list, place, batch_size, generator, drop_last): self.place = place self.batch_size = batch_size self.generator = generator self.converters = [] self.drop_last = drop_last for var in feed_list: assert var.lod_level == 0, "lod_level must be 0" self.converters.append( DataToLoDTensorConverter( place=self.place, lod_level=0, shape=var.shape, dtype=var.dtype)) def _done(self): return [c.done() for c in self.converters] def __call__(self): idx = 0 for each_sample in self.generator(): for each_slot, each_converter in six.moves.zip(each_sample, self.converters): each_converter.data.append(each_slot) idx += 1 if idx == self.batch_size: idx = 0 yield self._done() if not self.drop_last and idx > 0: yield self._done() else: [c._reset() for c in self.converters] class DataFeeder(object): """ DataFeeder converts the data that returned by a reader into a data structure that can feed into Executor and ParallelExecutor. The reader usually returns a list of mini-batch data entries. Each data entry in the list is one sample. Each sample is a list or a tuple with one feature or multiple features. The simple usage shows below: .. code-block:: python import paddle.fluid as fluid place = fluid.CPUPlace() img = fluid.layers.data(name='image', shape=[1, 28, 28]) label = fluid.layers.data(name='label', shape=[1], dtype='int64') feeder = fluid.DataFeeder([img, label], fluid.CPUPlace()) result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])]) If you want to feed data into GPU side separately in advance when you use multi-GPU to train a model, you can use `decorate_reader` function. .. code-block:: python import paddle import paddle.fluid as fluid place=fluid.CUDAPlace(0) data = fluid.layers.data(name='data', shape=[3, 224, 224], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feeder = fluid.DataFeeder(place=place, feed_list=[data, label]) reader = feeder.decorate_reader( paddle.batch(paddle.dataset.flowers.train(), batch_size=16), multi_devices=False) Args: feed_list(list): The Variables or Variables'name that will feed into model. place(Place): place indicates feed data into CPU or GPU, if you want to feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents the GPU id), or if you want to feed data into CPU, please using `fluid.CPUPlace()`. program(Program): The Program that will feed data into, if program is None, it will use default_main_program(). Default None. Raises: ValueError: If some Variable is not in this Program. Examples: .. code-block:: python import numpy as np import paddle import paddle.fluid as fluid place = fluid.CPUPlace() def reader(): yield [np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32')], main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): data_1 = fluid.layers.data(name='data_1', shape=[1, 2, 2]) data_2 = fluid.layers.data(name='data_2', shape=[1, 1, 3]) out = fluid.layers.fc(input=[data_1, data_2], size=2) # ... feeder = fluid.DataFeeder([data_1, data_2], place) exe = fluid.Executor(place) exe.run(startup_program) for data in reader(): outs = exe.run(program=main_program, feed=feeder.feed(data), fetch_list=[out]) """ def __init__(self, feed_list, place, program=None): self.feed_dtypes = [] self.feed_names = [] self.feed_shapes = [] self.feed_lod_level = [] if program is None: program = default_main_program() for each_var in feed_list: if isinstance(each_var, six.string_types): each_var = program.block(0).var(each_var) if not isinstance(each_var, Variable): raise TypeError("Feed list should contain a list of variable") self.feed_dtypes.append(each_var.dtype) self.feed_names.append(each_var.name) self.feed_lod_level.append(each_var.lod_level) self.feed_shapes.append(each_var.shape) self.place = place def feed(self, iterable): """ According to feed_list and iterable, converters the input into a data structure that can feed into Executor and ParallelExecutor. Args: iterable(list|tuple): the input data. Returns: dict: the result of conversion. Examples: .. code-block:: python import numpy.random as random import paddle.fluid as fluid def reader(limit=5): for i in range(limit): yield random.random([784]).astype('float32'), random.random([1]).astype('int64'), random.random([256]).astype('float32') data_1 = fluid.layers.data(name='data_1', shape=[1, 28, 28]) data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64') data_3 = fluid.layers.data(name='data_3', shape=[16, 16], dtype='float32') feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace()) result = feeder.feed(reader()) """ converter = [] for lod_level, shape, dtype in six.moves.zip( self.feed_lod_level, self.feed_shapes, self.feed_dtypes): converter.append( DataToLoDTensorConverter( place=self.place, lod_level=lod_level, shape=shape, dtype=dtype)) for each_sample in iterable: assert len(each_sample) == len(converter), ( "The number of fields in data (%s) does not match " + "len(feed_list) (%s)") % (len(each_sample), len(converter)) for each_converter, each_slot in six.moves.zip(converter, each_sample): each_converter.feed(each_slot) ret_dict = {} for each_name, each_converter in six.moves.zip(self.feed_names, converter): ret_dict[each_name] = each_converter.done() return ret_dict def feed_parallel(self, iterable, num_places=None): """ Takes multiple mini-batches. Each mini-batch will be feed on each device in advance. Args: iterable(list|tuple): the input data. num_places(int): the number of devices. Default None. Returns: dict: the result of conversion. Notes: The number of devices and number of mini-batches must be same. Examples: .. code-block:: python import numpy.random as random import paddle.fluid as fluid def reader(limit=10): for i in range(limit): yield [random.random([784]).astype('float32'), random.randint(10)], x = fluid.layers.data(name='x', shape=[1, 28, 28]) y = fluid.layers.data(name='y', shape=[1], dtype='int64') feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace()) place_num = 2 places = [fluid.CPUPlace() for x in range(place_num)] data = [] exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places) for item in reader(): data.append(item) if place_num == len(data): exe.run(program=program, feed=list(feeder.feed_parallel(data, place_num)), fetch_list=[]) data = [] """ if isinstance(self.place, core.CUDAPlace): places = [ core.CUDAPlace(i) for i in six.moves.xrange( self._get_number_of_places_(num_places)) ] else: places = [ core.CPUPlace() for _ in six.moves.xrange( self._get_number_of_places_(num_places)) ] if len(iterable) != len(places): raise ValueError("feed_parallel takes multiple mini-batches. Each " "mini-batch will be feed on each device. The " "number of devices and number of mini-batches " "must be same.") place = self.place for p, batch in six.moves.zip(places, iterable): self.place = p yield self.feed(batch) self.place = place def _get_number_of_places_(self, num_places): if num_places is not None: return int(num_places) elif isinstance(self.place, core.CUDAPlace): return core.get_cuda_device_count() else: cpu_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) return cpu_num def decorate_reader(self, reader, multi_devices, num_places=None, drop_last=True): """ Converter the input data into a data that returned by reader into multiple mini-batches. Each mini-batch will be feed on each device. Args: reader(function): the reader is the function which can generate data. multi_devices(bool): whether to use multiple devices or not. num_places(int): if multi_devices is True, you can specify the number of GPU to use, if multi_devices is None, the function will use all the GPU of the current machine. Default None. drop_last(bool): whether to drop the last batch if the size of the last batch is less than batch_size. Default True. Returns: dict: the result of conversion. Raises: ValueError: If drop_last is False and the data batch cannot fit for devices. Examples: .. code-block:: python import numpy.random as random import paddle import paddle.fluid as fluid def reader(limit=5): for i in range(limit): yield (random.random([784]).astype('float32'), random.random([1]).astype('int64')), place=fluid.CUDAPlace(0) data = fluid.layers.data(name='data', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feeder = fluid.DataFeeder(place=place, feed_list=[data, label]) reader = feeder.decorate_reader(reader, multi_devices=False) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in reader(): exe.run(feed=data) """ def __reader_creator__(): if not multi_devices: for item in reader(): yield self.feed(item) else: num = self._get_number_of_places_(num_places) item = [] for batch in reader(): item.append(batch) if len(item) == num: yield list(self.feed_parallel(item, num)) item = [] if not drop_last and len(item) != 0: raise ValueError( "The data batch which cannot fit for devices will be " "dropped is not implementation. Other strategies are " "not implemented") return __reader_creator__