# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid def _get_global_param_norm_(params_grads): res = fluid.layers.fill_constant(shape=[1], dtype="float32", value=0.0) for _, grad in params_grads: norm_var = fluid.layers.reduce_sum( input=fluid.layers.pow(x=grad, factor=2.0)) fluid.layers.sums(input=[norm_var, res], out=[res]) fluid.layers.sqrt(x=res, out=res) return res BATCH_SIZE = 128 CLIP = 0.5 prog = fluid.framework.Program() with fluid.program_guard(main_program=prog): image = fluid.layers.data(name='x', shape=[784], dtype='float32') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') label = fluid.layers.data(name='y', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) prog_clip = prog.clone() avg_cost_clip = prog_clip.block(0).var(avg_cost.name) p_g = fluid.backward.append_backward(loss=avg_cost) p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip) with fluid.program_guard(main_program=prog): gloabl_norm = _get_global_param_norm_(p_g) with fluid.program_guard(main_program=prog_clip): fluid.clip.gradient_clip_by_global_norm(clip_norm=CLIP) p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip) gloabl_norm_clip = _get_global_param_norm_(p_g_clip) train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(fluid.default_startup_program()) count = 0 for data in train_reader(): count += 1 if count > 5: break out, = exe.run(prog, feed=feeder.feed(data), fetch_list=[gloabl_norm]) out_clip, = exe.run(prog_clip, feed=feeder.feed(data), fetch_list=[gloabl_norm_clip]) if not np.allclose(out_clip, np.minimum(out, np.array([CLIP]))): exit(1) exit(0)