# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import paddle from paddle.fluid import core from paddle import _C_ops from paddle.autograd import PyLayer from paddle.fluid import framework from ...utils.recompute import check_recompute_necessary, detach_variable from ..parallel_layers.random import get_rng_state_tracker __all__ = [] FLOAT_TYPE_DICT = { paddle.float16: "float16", paddle.float32: "float32", paddle.float64: "float64", } PADDLE_TO_NUMBER = { paddle.float16: 0, paddle.float32: 1, paddle.float64: 2, paddle.int32: 3, paddle.int64: 4 } NUMBER_TO_DTYPE = { 0: "float16", 1: "float32", 2: "float64", 3: "int32", 4: "int64" } def is_float_tensor(tensor): """Is a float tensor""" return tensor.dtype in FLOAT_TYPE_DICT.keys() def get_tensor_dtype(dtype): assert dtype in FLOAT_TYPE_DICT.keys() return FLOAT_TYPE_DICT[dtype] def paddle_2_number(dtype): assert dtype in PADDLE_TO_NUMBER.keys() return PADDLE_TO_NUMBER[dtype] def number_2_dtype(number): assert number in NUMBER_TO_DTYPE.keys() return NUMBER_TO_DTYPE[number] def get_tensor_bytes(tensor): """Get the bytes a tensor occupied.""" elem_size = None if tensor.dtype == paddle.float32: elem_size = 4 elif tensor.dtype == paddle.float64: elem_size = 8 elif tensor.dtype == paddle.int64: elem_size = 8 elif tensor.dtype == paddle.int32: elem_size = 4 elif tensor.dtype == paddle.float16: elem_size = 2 elif tensor.dtype == paddle.int8: elem_size = 1 else: raise ValueError("unknown data type: {}".format(tensor.dtype)) return tensor.numel() * elem_size _hcg = None _recompute_offload = False _recompute_partition = False def _initialize_recompute_setting(is_offload, is_partition): global _recompute_offload, _recompute_partition _recompute_offload = is_offload _recompute_partition = is_partition def _initialize_recompute_hcg(hcg): global _hcg _hcg = hcg def _all_gather(tensor, group=None, use_calc_stream=True): """ The main difference with paddle.distributed.all_gather: no need to pass in tensor_list, the returned tensor is spliced """ if group is not None and not group.is_member(): return ring_id = 0 if group is None else group.id nranks = paddle.distributed.collective._get_global_group( ).nranks if group is None else group.nranks return _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'nranks', nranks) def _split_activation(tensor): global _hcg mp_degree = _hcg.get_model_parallel_world_size() mp_rank = _hcg.get_model_parallel_rank() if mp_degree < 2: return tensor tensor_numel = paddle.numel(tensor) assert tensor_numel != 0, "can't recompute zero element" assert tensor_numel % mp_degree == 0, "The capacity of the activation () cannot be divisible by mp_degree()".format( tensor_numel, mp_degree) # use inplace operation to save memory data = tensor.flatten_() part_size = tensor_numel // mp_degree start = part_size * mp_rank end = start + part_size return data[start:end] def _merge_activation(tensor): global _hcg mp_degree = _hcg.get_model_parallel_world_size() mp_rank = _hcg.get_model_parallel_rank() mp_group = _hcg.get_model_parallel_group() if mp_degree < 2: return tensor return _all_gather(tensor, group=mp_group) @contextlib.contextmanager def _swith_rng_state_tracker(rng_state, tracker): orig_cuda_rng_state = paddle.get_cuda_rng_state() orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker() paddle.set_cuda_rng_state(rng_state) get_rng_state_tracker().set_states_tracker(tracker) try: yield finally: paddle.set_cuda_rng_state(orig_cuda_rng_state) get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker) class _HPRecomputeFunction(PyLayer): """ Compared with paddle.distributed.fleet.utils.recompute, there are the following differences: 1. In order to support PipeLineParallel, the input of recompute is modified to ensure that the input can be tuple type. 2. Offload support for activation 3. Support MP segmentation of activation to further reduce cuda memory 4. Adapt to the random state of MP """ @staticmethod def forward(ctx, run_function, all_outputs, *args): check_recompute_necessary(args) # store for recomputing ctx.run_function = run_function # store the rng states ctx.fwd_cuda_rng_state = paddle.get_cuda_rng_state() ctx.fwd_cuda_rng_state_tracker = get_rng_state_tracker( ).get_states_tracker() # save input for backward ctx.inputs = [] ctx.tensor_indices = [] ctx.tensor_shapes = [] tensor_inputs = [] cur_device = paddle.get_device() assert 'gpu:' in paddle.get_device( ), "Recompute with RNG is not support current device: {}.".format( cur_device) # TODO support AMP tracer = framework._dygraph_tracer() if tracer._amp_level == 0: ctx.is_fw_autocast = False else: ctx.is_fw_autocast = True ctx.amp_mode = 'O1' ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list() with paddle.no_grad(): outputs = run_function(*args) for i, arg in enumerate(args): if paddle.is_tensor(arg): state = arg.stop_gradient if _recompute_partition: ctx.tensor_shapes.append(arg.shape) partition = _split_activation(arg.detach()).clone() # TODO(shenliang03) not use calculate stream to D2H to speed arg = partition.cpu() if _recompute_offload else partition else: arg = arg.cpu() if _recompute_offload else arg arg.stop_gradient = state tensor_inputs.append(arg) ctx.tensor_indices.append(i) ctx.inputs.append(None) else: ctx.inputs.append(arg) ctx.save_for_backward(*tensor_inputs) if paddle.is_tensor(outputs): all_outputs += [outputs] return outputs else: all_outputs += outputs return tuple(outputs) @staticmethod def backward(ctx, *args): with paddle.fluid.dygraph.guard(): # Restore inputs inputs = list(ctx.inputs) tensor_indices = ctx.tensor_indices tensor_shapes = ctx.tensor_shapes tensors = list(ctx.saved_tensor()) device_id = paddle.distributed.ParallelEnv().device_id for i, idx in enumerate(tensor_indices): if _recompute_partition: state = tensors[i].stop_gradient tensors[i] = _merge_activation(tensors[i]).detach( ).reshape_(tensor_shapes[i]) tensors[i].stop_gradient = state inputs[idx] = tensors[i].cuda( device_id) if _recompute_offload else tensors[i] tracer = framework._dygraph_tracer() tracer._has_grad = True # need restore auto_cast state as well as w/b list with _swith_rng_state_tracker(ctx.fwd_cuda_rng_state, ctx.fwd_cuda_rng_state_tracker): with paddle.amp.auto_cast( enable=ctx.is_fw_autocast, custom_white_list=ctx.amp_white_list, custom_black_list=ctx.amp_black_list, level=ctx.amp_mode): detached_inputs = detach_variable(tuple(inputs)) outputs = ctx.run_function(*detached_inputs) if isinstance(outputs, core.VarBase): outputs = (outputs, ) assert len(outputs) == len(args) forward_outputs_with_grad = [] backward_inputs = [] for i in range(len(outputs)): if isinstance(outputs[i], core.VarBase) and not outputs[i].stop_gradient: forward_outputs_with_grad.append(outputs[i]) backward_inputs.append(args[i]) if len(forward_outputs_with_grad) == 0: raise RuntimeError( "none of output has stop_gradient=False, this recompute() is not necessary" ) # actually backward paddle.autograd.backward(forward_outputs_with_grad, backward_inputs) grads = list(inp._grad_ivar() for inp in detached_inputs if isinstance(inp, core.VarBase)) return grads def _hp_recompute(function, *args): # NODTE(shenliang03)The current hybrid parallel recompute has limitations. # It cannot handle the following situations: # 1. The calculation output of recompute, there are tensors that do not require gradients. # 2. The forward output tensor has no gradient. This problem can be solved temporarily by detach(). # 3. Here, we only use float dtype to distinguish whether a gradient is needed in output tensor all_outputs = [] _HPRecomputeFunction.apply(function, all_outputs, *args) if len(all_outputs) == 1: return all_outputs[0] else: for output in all_outputs: if paddle.is_tensor(output) and not is_float_tensor(output): output.stop_gradient = True return tuple(all_outputs)