# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..fluid.layers import core, reshape from ..fluid.layer_helper import LayerHelper from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_ from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype from ..fluid.layers.tensor import fill_constant from ..fluid.layers import utils import numpy as np # TODO: define functions to manipulate a tensor from ..fluid.layers import cast #DEFINE_ALIAS from ..fluid.layers import expand #DEFINE_ALIAS from ..fluid.layers import expand_as #DEFINE_ALIAS from ..fluid.layers import reshape #DEFINE_ALIAS from ..fluid.layers import scatter #DEFINE_ALIAS from ..fluid.layers import slice #DEFINE_ALIAS from ..fluid.layers import strided_slice #DEFINE_ALIAS from ..fluid.layers import transpose #DEFINE_ALIAS from ..fluid.layers import unique #DEFINE_ALIAS from ..fluid.layers import unstack #DEFINE_ALIAS from ..fluid.layers import gather_nd #DEFINE_ALIAS from ..fluid.layers import scatter_nd_add #DEFINE_ALIAS from ..fluid.layers import scatter_nd #DEFINE_ALIAS from ..fluid.layers import shard_index #DEFINE_ALIAS from ..fluid.layers import unique_with_counts #DEFINE_ALIAS from ..fluid import layers import paddle __all__ = [ 'cast', 'concat', 'expand', 'expand_as', 'flatten', 'gather', 'gather_nd', 'reshape', 'reverse', 'scatter', 'scatter_nd_add', 'scatter_nd', 'shard_index', 'slice', 'split', 'squeeze', 'stack', 'strided_slice', 'transpose', 'unique', 'unique_with_counts', 'unsqueeze', 'unstack', 'flip', 'unbind', 'roll', ] def concat(x, axis=0, name=None): """ :alias_main: paddle.concat :alias: paddle.tensor.concat, paddle.tensor.manipulation.concat This OP concatenates the input along the axis. Args: x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64. All the Tensors in ``x`` must have same data type. axis(int|Tensor, optional): Specify the axis to operate on the input Tensors. It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way as ``axis+R``. Default is 0. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Raises: TypeError: ``x`` must be list or tuple. TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor. TypeError: All the Tensors in ``x`` must have the same data type. Returns: Tensor: A Tensor with the same data type as ``x``. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_imperative() # Now we are in imperative mode in1 = np.array([[1, 2, 3], [4, 5, 6]]) in2 = np.array([[11, 12, 13], [14, 15, 16]]) in3 = np.array([[21, 22], [23, 24]]) x1 = paddle.imperative.to_variable(in1) x2 = paddle.imperative.to_variable(in2) x3 = paddle.imperative.to_variable(in3) zero = paddle.full(shape=[1], dtype='int32', fill_value=0) # When the axis is negative, the real axis is (axis + Rank(x)) # As follow, axis is -1, Rank(x) is 2, the real axis is 1 out1 = paddle.concat(x=[x1, x2, x3], axis=-1) out2 = paddle.concat(x=[x1, x2], axis=0) out3 = paddle.concat(x=[x1, x2], axis=zero) # out1 # [[ 1 2 3 11 12 13 21 22] # [ 4 5 6 14 15 16 23 24]] # out2 out3 # [[ 1 2 3] # [ 4 5 6] # [11 12 13] # [14 15 16]] """ check_type(x, 'x', (list, tuple), 'concat') return paddle.fluid.layers.concat(input=x, axis=axis, name=name) def flip(x, axis, name=None): """ :alias_main: paddle.flip :alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip Reverse the order of a n-D tensor along given axis in axis. Args: x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x should be float32, float64, int32, int64, bool. axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_imperative() image_shape=(3, 2, 2) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape) x = x.astype('float32') img = paddle.imperative.to_variable(x) out = paddle.flip(img, [0,1]) print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]] """ helper = LayerHelper("flip", **locals()) check_type(x, 'X', (Variable), 'flip') dtype = helper.input_dtype('x') check_dtype(dtype, 'X', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'], 'flip') check_type(axis, 'axis', (list, tuple), 'flip') if name is None: out = helper.create_variable_for_type_inference(dtype) else: out = helper.create_variable(name=name, dtype=dtype, persistable=False) helper.append_op( type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}) return out reverse = flip #DEFINE_ALIAS def flatten(x, start_axis=0, stop_axis=-1, name=None): """ **Flatten op** Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis. For Example: .. code-block:: text Case 1: Given X.shape = (3, 100, 100, 4) and start_axis = 1 end_axis = 2 We get: Out.shape = (3, 1000 * 100, 2) Case 2: Given X.shape = (3, 100, 100, 4) and start_axis = 0 stop_axis = -1 We get: Out.shape = (3 * 100 * 100 * 4) Args: x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32, float64, int8, int32, int64. start_axis (int): the start axis to flatten stop_axis (int): the stop axis to flatten name(str, Optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Variable: A tensor with the contents of the input tensor, with input \ axes flattened by indicated start axis and end axis. \ A Tensor with data type same as input x. Raises: ValueError: If x is not a Variable. ValueError: If start_axis or stop_axis is illegal. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_imperative() image_shape=(2, 3, 4, 4) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100. x = x.astype('float32') img = paddle.imperative.to_variable(x) out = paddle.flatten(img, start_axis=1, stop_axis=2) # out shape is [2, 12, 4] """ if not (isinstance(x, Variable)): raise ValueError("The input x should be a Variable") check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten') helper = LayerHelper('flatten', **locals()) x_dim = len(x.shape) if not (isinstance(start_axis, int)) or ( start_axis > x_dim - 1) or start_axis < -x_dim: raise ValueError( "The start_axis should be a int, and in range [-rank(x), rank(x))") if not (isinstance(stop_axis, int)) or ( stop_axis > x_dim - 1) or stop_axis < -x_dim: raise ValueError( "The stop_axis should be a int, and in range [-rank(x), rank(x))") if start_axis < 0: start_axis = start_axis + x_dim if stop_axis < 0: stop_axis = stop_axis + x_dim if start_axis > stop_axis: raise ValueError("The stop_axis should be larger than stat_axis") if in_dygraph_mode(): dy_out, _ = core.ops.flatten_contiguous_range( x, 'start_axis', start_axis, 'stop_axis', stop_axis) return dy_out out = helper.create_variable_for_type_inference(x.dtype) x_shape = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='flatten_contiguous_range', inputs={"X": x}, outputs={'Out': out, 'XShape': x_shape}, attrs={"start_axis": start_axis, "stop_axis": stop_axis}) return out def roll(x, shifts, axis=None, name=None): """ :alias_main: paddle.roll :alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that roll beyond the last position are re-introduced at the first according to 'shifts'. If a axis is not specified, the tensor will be flattened before rolling and then restored to the original shape. Args: x (Variable): The x tensor variable as input. shifts (int|list|tuple): The number of places by which the elements of the `x` tensor are shifted. axis (int|list|tuple|None): axis(axes) along which to roll. Returns: Variable: A Tensor with same data type as `x`. Examples: .. code-block:: python import numpy as np import paddle import paddle.fluid as fluid data = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]) paddle.enable_imperative() x = paddle.imperative.to_variable(data) out_z1 = paddle.roll(x, shifts=1) print(out_z1.numpy()) #[[9. 1. 2.] # [3. 4. 5.] # [6. 7. 8.]] out_z2 = paddle.roll(x, shifts=1, axis=0) print(out_z2.numpy()) #[[7. 8. 9.] # [1. 2. 3.] # [4. 5. 6.]] """ helper = LayerHelper("roll", **locals()) origin_shape = x.shape if type(shifts) == int: shifts = [shifts] if type(axis) == int: axis = [axis] len_origin_shape = len(origin_shape) if axis: for i in range(len(axis)): if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape: raise ValueError( "axis is out of range, it should be in range [{}, {}), but received {}". format(-len_origin_shape, len_origin_shape, axis)) if axis: check_type(axis, 'axis', (list, tuple), 'roll') check_type(shifts, 'shifts', (list, tuple), 'roll') if in_dygraph_mode(): if axis is None: x = core.ops.reshape(x, 'shape', [-1, 1]) axis = [0] out = core.ops.roll(x, 'axis', axis, 'shifts', shifts) return core.ops.reshape(out, 'shape', origin_shape) out = helper.create_variable_for_type_inference(x.dtype) if axis is None: x = reshape(x, shape=[-1, 1]) axis = [0] helper.append_op( type='roll', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'shifts': shifts}) out = reshape(out, shape=origin_shape, inplace=True) return out def stack(x, axis=0, name=None): """ :alias_main: paddle.stack :alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. All tensors must be of the same shape and same dtype. For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked tensor is [N, A, B]; if ``axis == 1``, the shape of stacked tensor is [A, N, B], etc. .. code-block:: text Case 1: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 0 Output: Out.dims = [3, 1, 2] Out.data =[ [ [1.0, 2.0] ], [ [3.0, 4.0] ], [ [5.0, 6.0] ] ] Case 2: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 1 or axis = -2 # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1. Output: Out.shape = [1, 3, 2] Out.data =[ [ [1.0, 2.0] [3.0, 4.0] [5.0, 6.0] ] ] Args: x (Tensor|list[Tensor]): Input ``x`` can be a single tensor, or a ``list`` of tensors. If ``x`` is a ``list``, the Tensors in ``x`` must be of the same shape and dtype. Supported data types: float32, float64, int32, int64. axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``, where ``R`` is the number of dimensions of the first input tensor ``x[0]``. If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0. name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: Tensor: The stacked tensor with same data type as input. Example: .. code-block:: python import paddle import numpy as np data1 = np.array([[1.0, 2.0]]) data2 = np.array([[3.0, 4.0]]) data3 = np.array([[5.0, 6.0]]) paddle.enable_imperative() x1 = paddle.imperative.to_variable(data1) x2 = paddle.imperative.to_variable(data2) x3 = paddle.imperative.to_variable(data3) out = paddle.stack([x1, x2, x3], axis=0) print(out.shape) # [3, 1, 2] print(out.numpy()) # [[[1., 2.]], # [[3., 4.]], # [[5., 6.]]] """ return layers.stack(x, axis, name) def split(x, num_or_sections, axis=0, name=None): """ :alias_main: paddle.split :alias: paddle.tensor.split, paddle.tensor.manipulation.split Split the input tensor into multiple sub-Tensors. Args: x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64. num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` indicates the number of equal sized sub-Tensors that the ``x`` will be divided into. If ``num_or_sections`` is a list or tuple, the length of it indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors' dimension orderly. The length of the list must not be larger than the ``x`` 's size of specified ``axis``. axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type ``int`` or a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: list(Tensor): The list of segmented Tensors. Raises: TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64. TypeError: ``num_or_sections`` is not int, list or tuple. TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor. Example: .. code-block:: python import numpy as np import paddle paddle.enable_imperative() # x is a Tensor which shape is [3, 9, 5] x_np = np.random.random([3, 9, 5]).astype("int32") x = paddle.imperative.to_variable(x_np) out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5] out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1) # out0.shape [3, 2, 5] # out1.shape [3, 3, 5] # out2.shape [3, 4, 5] out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1) # out0.shape [3, 2, 5] # out1.shape [3, 3, 5] # out2.shape [3, 4, 5] # axis is negative, the real axis is (rank(x) + axis) which real # value is 1. out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5] """ return paddle.fluid.layers.split( input=x, num_or_sections=num_or_sections, dim=axis, name=name) def squeeze(x, axis=None, name=None): """ :alias_main: paddle.squeeze :alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. If axis is provided, it will remove the dimension(s) by given axis that of size 1. If the dimension of given axis is not of size 1, the dimension remain unchanged. If axis is not provided, all dims equal of size 1 will be removed. .. code-block:: text Case1: Input: x.shape = [1, 3, 1, 5] # If axis is not provided, all dims equal of size 1 will be removed. axis = None Output: out.shape = [3, 5] Case2: Input: x.shape = [1, 3, 1, 5] # If axis is provided, it will remove the dimension(s) by given axis that of size 1. axis = 0 Output: out.shape = [3, 1, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. axis = [0, 2, 3] Output: out.shape = [3, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If axis is negative, axis = axis + ndim (number of dimensions in x). axis = [-2] Output: out.shape = [1, 3, 5] Args: x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64. axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None. The range of axis is :math:`[-ndim(x), ndim(x))`. If axis is negative, :math:`axis = axis + ndim(x)`. If axis is None, all the dimensions of x of size 1 will be removed. name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: Tensor: Squeezed Tensor with the same data type as input Tensor. Examples: .. code-block:: python import paddle paddle.enable_imperative() x = paddle.rand([5, 1, 10]) output = paddle.squeeze(x, axis=1) # output.shape [5, 10] """ if axis is None: axis = [] elif isinstance(axis, int): axis = [axis] elif isinstance(axis, tuple): axis = list(axis) return layers.squeeze(x, axis, name) def unsqueeze(x, axis, name=None): """ :alias_main: paddle.unsqueeze :alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one required argument axis, a dimension or list of dimensions that will be inserted. Dimension indices in axis are as seen in the output tensor. Args: x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64. axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axis`` is a Tensor, it should be an 1-D Tensor . If ``axis`` is negative, ``axis = axis + ndim(x) + 1``. name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None. Returns: Tensor: Unsqueezed Tensor with the same data type as input Tensor. Examples: .. code-block:: python import paddle paddle.enable_imperative() x = paddle.rand([5, 10]) print(x.shape) # [5, 10] out1 = paddle.unsqueeze(x, axis=0) print(out1.shape) # [1, 5, 10] out2 = paddle.unsqueeze(x, axis=[0, 2]) print(out2.shape) # [1, 5, 1, 10] axis = paddle.fluid.dygraph.to_variable([0, 1, 2]) out3 = paddle.unsqueeze(x, axis=axis) print(out3.shape) # [1, 1, 1, 5, 10] """ if isinstance(axis, int): axis = [axis] return layers.unsqueeze(x, axis, name) def gather(input, index, overwrite=True): """ :alias_main: paddle.gather :alias: paddle.gather,paddle.tensor.gather,paddle.tensor.manipulation.gather **Gather Layer** Output is obtained by gathering entries of the outer-most dimension of X indexed by `index` and concatenate them together. .. math:: Out = X[Index] .. code-block:: text Given: X = [[1, 2], [3, 4], [5, 6]] Index = [1, 2] Then: Out = [[3, 4], [5, 6]] Args: input (Variable): The source input tensor with rank>=1. Supported data type is int32, int64, float32, float64 and uint8 (only for CPU), float16 (only for GPU). index (Variable): The index input tensor with rank=1. Data type is int32 or int64. overwrite (bool, optional): The mode that updating the grad when has same index. If True, use the overwrite mode to update the grad of the same index, if False, use the accumulate mode to update the grad of the same index. Default value is True. Returns: output (Variable): The output is a tensor with the same rank as input. Examples: .. code-block:: python import numpy as np import paddle import paddle.fluid as fluid with fluid.dygraph.guard(): input_1 = np.array([[1,2],[3,4],[5,6]]) index_1 = np.array([0,1]) input = fluid.dygraph.to_variable(input_1) index = fluid.dygraph.to_variable(index_1) output = paddle.gather(input, index) # expected output: [[1,2],[3,4]] """ helper = LayerHelper('gather', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="gather", inputs={"X": input, "Index": index}, outputs={"Out": out}, attrs={'overwrite': overwrite}) return out def unbind(input, axis=0): """ :alias_main: paddle.tensor.unbind :alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind Removes a tensor dimension, then split the input tensor into multiple sub-Tensors. Args: input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64. axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0. Returns: list(Variable): The list of segmented Tensor variables. Example: .. code-block:: python import paddle # input is a variable which shape is [3, 4, 5] input = paddle.fluid.data( name="input", shape=[3, 4, 5], dtype="float32") [x0, x1, x2] = paddle.tensor.unbind(input, axis=0) # x0.shape [4, 5] # x1.shape [4, 5] # x2.shape [4, 5] [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1) # x0.shape [3, 5] # x1.shape [3, 5] # x2.shape [3, 5] # x3.shape [3, 5] """ helper = LayerHelper("unbind", **locals()) check_type(input, 'input', (Variable), 'unbind') dtype = helper.input_dtype() check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind') if not isinstance(axis, (int)): raise TypeError("The type of 'axis' must be int, but received %s." % (type(axis))) if isinstance(axis, np.generic): axis = np.asscalar(axis) input_shape = input.shape axis_ = axis if axis >= 0 else len(input_shape) + axis num = input_shape[axis_] outs = [ helper.create_variable_for_type_inference(dtype=helper.input_dtype()) for i in range(num) ] helper.append_op( type="unbind", inputs={"X": input}, outputs={"Out": outs}, attrs={"axis": axis}) return outs