# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import paddle from paddle.inference import _get_phi_kernel_name paddle.enable_static() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--model_dir', type=str, default="", help='Directory of the inference models that named with pdmodel.', ) parser.add_argument( '--op_list', type=str, default="", help='List of ops like "conv2d;pool2d;relu".', ) return parser.parse_args() def get_model_ops(model_file, ops_set): model_bytes = paddle.static.load_from_file(model_file) pg = paddle.static.deserialize_program(model_bytes) for i in range(0, pg.desc.num_blocks()): block = pg.desc.block(i) size = block.op_size() for j in range(0, size): ops_set.add(block.op(j).type()) def get_model_phi_kernels(ops_set): phi_set = set() for op in ops_set: print(op) print(_get_phi_kernel_name(op)) phi_set.add(_get_phi_kernel_name(op)) return phi_set if __name__ == '__main__': args = parse_args() ops_set = set() if args.op_list != "": op_list = args.op_list.split(";") for op in op_list: ops_set.add(op) if args.model_dir != "": for root, dirs, files in os.walk(args.model_dir, topdown=True): for name in files: if re.match(r'.*pdmodel', name): get_model_ops(os.path.join(root, name), ops_set) phi_set = get_model_phi_kernels(ops_set) ops = ";".join(ops_set) kernels = ";".join(phi_set) print("op_list: ", ops) print("kernel_list: ", kernels) ops = np.array([ops]) kernels = np.array([kernels]) np.savetxt("op_list.txt", ops, fmt='%s') np.savetxt("kernel_list.txt", kernels, fmt='%s')