# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import unittest import warnings import numpy as np from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.layer_helper import LayerHelper class TestElementwiseAddOp(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_add" self.python_api = paddle.add self.public_python_api = paddle.add self.prim_op_type = "prim" self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.if_check_prim() self.if_enable_cinn() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.out} def check_dygraph(self): return not self.use_mkldnn and self.axis == -1 def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output( check_dygraph=self.check_dygraph(), check_prim=self.check_prim ) def test_check_grad_normal(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['X', 'Y'], 'Out', check_dygraph=self.check_dygraph(), check_prim=self.check_prim, ) def test_check_grad_ingore_x(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=self.check_dygraph(), check_prim=self.check_prim, ) def test_check_grad_ingore_y(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode if self.dtype == np.float16: return self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=self.check_dygraph(), check_prim=self.check_prim, ) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.add(self.x, self.y) def init_dtype(self): self.dtype = np.float64 def init_axis(self): self.axis = -1 def if_check_prim(self): self.check_prim = self.axis == -1 def if_enable_cinn(self): pass class TestElementwiseAddOp_ZeroDim1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, []).astype(self.dtype) self.y = np.random.uniform(0.1, 1, []).astype(self.dtype) self.out = np.add(self.x, self.y) def if_enable_cinn(self): self.enable_cinn = False class TestElementwiseAddOp_ZeroDim2(TestElementwiseAddOp_ZeroDim1): def init_input_output(self): self.x = np.random.uniform(0.1, 1, []).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.add(self.x, self.y) class TestElementwiseAddOp_ZeroDim3(TestElementwiseAddOp_ZeroDim1): def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, []).astype(self.dtype) self.out = np.add(self.x, self.y) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16ElementwiseAddOp(TestElementwiseAddOp): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode place = core.CUDAPlace(0) self.check_output_with_place( place, atol=1e-3, check_dygraph=self.check_dygraph(), check_prim=self.check_prim, ) def test_check_grad_normal(self): place = core.CUDAPlace(0) self.check_grad_with_place(place, ['X', 'Y'], 'Out', check_prim=True) def test_check_grad_ingore_x(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['Y'], 'Out', no_grad_set=set("X"), check_prim=True ) def test_check_grad_ingore_y(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['X'], 'Out', no_grad_set=set('Y'), check_prim=True ) @unittest.skipIf( not core.is_compiled_with_cuda() or core.cudnn_version() < 8100 or paddle.device.cuda.get_device_capability()[0] < 8, "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0", ) class TestBF16ElementwiseAddOp(OpTest): def setUp(self): self.op_type = "elementwise_add" self.python_api = paddle.add self.public_python_api = paddle.add self.prim_op_type = "prim" self.dtype = np.uint16 self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.out = np.add(self.x, self.y) self.axis = -1 self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype( convert_float_to_uint16(self.x) ), 'Y': OpTest.np_dtype_to_fluid_dtype( convert_float_to_uint16(self.y) ), } self.attrs = {'axis': self.axis, 'use_mkldnn': False} self.outputs = {'Out': convert_float_to_uint16(self.out)} self.if_enable_cinn() def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place) def test_check_grad_normal(self): place = core.CUDAPlace(0) self.check_grad_with_place(place, ['X', 'Y'], 'Out', check_prim=True) def test_check_grad_ingore_x(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['Y'], 'Out', no_grad_set=set("X"), check_prim=True ) def test_check_grad_ingore_y(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['X'], 'Out', no_grad_set=set('Y'), check_prim=True ) def if_enable_cinn(self): self.enable_cinn = False @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestElementwiseAddOp_scalar(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1,1) to test broadcast." ) class TestElementwiseAddOp_scalar2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1,1) to test broadcast." ) class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_Vector(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.add(self.x, self.y) class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.add(self.x, self.y) class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1) self.python_api = paddle.add def init_axis(self): self.axis = 0 def if_check_prim(self): self.check_prim = False @skip_check_grad_ci( reason="the numerical method is not accurate enough on fp16" ) class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1) self.python_api = paddle.add def init_axis(self): self.axis = 0 # In paddle2.0 api we don't have axis parameter in add, # so we can't check prim when axis is not -1 by default. def if_check_prim(self): self.check_prim = self.axis == -1 # Because the numerical method is not accurate enough on fp16, # so we do not test the grad on fp16 def test_check_grad_normal(self): pass def test_check_grad_ingore_x(self): pass def test_check_grad_ingore_y(self): pass class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 100, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 100, 1) self.python_api = paddle.add def init_axis(self): self.axis = 1 def if_check_prim(self): self.check_prim = False class TestFP16ElementwiseAddOp_broadcast_1( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(2, 100, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 100, 1) self.python_api = paddle.add def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 100) self.python_api = paddle.add class TestFP16ElementwiseAddOp_broadcast_2( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 100) self.python_api = paddle.add def init_axis(self): self.axis = -1 class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 1).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12, 1) self.python_api = paddle.add def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_broadcast_3( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12, 1) self.python_api = paddle.add def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype) self.y = np.random.rand(100, 1).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1, 1) self.python_api = paddle.add def init_axis(self): self.axis = 0 class TestFP16ElementwiseAddOp_broadcast_4( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype) self.y = np.random.rand(100, 1).astype(self.dtype) self.out = self.x + self.y.reshape(100, 1, 1, 1) self.python_api = paddle.add def init_axis(self): self.axis = 0 class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 3, 12).astype(self.dtype) self.y = np.random.rand(10, 1, 12).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_broadcast_5( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(10, 3, 12).astype(self.dtype) self.y = np.random.rand(10, 1, 12).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype) self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_broadcast_7(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(1, 1, 20, 5).astype(self.dtype) self.y = np.random.rand(20, 5, 1, 1).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_broadcast_6( TestFP16ElementwiseAddOp_broadcast_0 ): def init_input_output(self): self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype) self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12) def init_axis(self): self.axis = 1 @skip_check_grad_ci( reason="the numerical method is not accurate enough on fp16." ) class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12) def init_axis(self): self.axis = 1 # Because the numerical method is not accurate enough on fp16, # so we do not test the grad on fp16 def test_check_grad_normal(self): pass def test_check_grad_ingore_x(self): pass def test_check_grad_ingore_y(self): pass class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 100, 1).astype(self.dtype) self.y = np.random.rand(100, 1).astype(self.dtype) self.out = self.x + self.y.reshape(1, 100, 1) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(1, 1, 100).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 100).astype(self.dtype) self.y = np.random.rand(1, 1, 100).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype) self.y = np.random.rand(10, 1, 12, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 12).astype(self.dtype) self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = 2 class TestElementwiseAddOp_same_shape_ysize_large(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 1, 12).astype(self.dtype) self.y = np.random.rand(10, 2, 12).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = 0 class TestAddApi(unittest.TestCase): def _executed_api(self, x, y, name=None): return paddle.add(x, y, name) def test_name(self): with fluid.program_guard(fluid.Program()): x = paddle.static.data(name="x", shape=[2, 3], dtype="float32") y = paddle.static.data(name='y', shape=[2, 3], dtype='float32') y_1 = self._executed_api(x, y, name='add_res') self.assertEqual(('add_res' in y_1.name), True) def test_declarative(self): with fluid.program_guard(fluid.Program()): def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32'), } x = paddle.static.data(name="x", shape=[3], dtype='float32') y = paddle.static.data(name="y", shape=[3], dtype='float32') z = self._executed_api(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) z_expected = np.array([3.0, 8.0, 6.0]) self.assertEqual((z_value == z_expected).all(), True) def test_dygraph(self): with fluid.dygraph.guard(): np_x = np.array([2, 3, 4]).astype('float64') np_y = np.array([1, 5, 2]).astype('float64') x = fluid.dygraph.to_variable(np_x) y = fluid.dygraph.to_variable(np_y) z = self._executed_api(x, y) np_z = z.numpy() z_expected = np.array([3.0, 8.0, 6.0]) self.assertEqual((np_z == z_expected).all(), True) class TestAddInplaceApi(TestAddApi): def _executed_api(self, x, y, name=None): return x.add_(y, name) class TestAddInplaceBroadcastSuccess(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(2, 3, 4).astype('float') self.y_numpy = np.random.rand(3, 4).astype('float') def test_broadcast_success(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) inplace_result = x.add_(y) numpy_result = self.x_numpy + self.y_numpy self.assertEqual((inplace_result.numpy() == numpy_result).all(), True) paddle.enable_static() class TestAddInplaceBroadcastSuccess2(TestAddInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float') self.y_numpy = np.random.rand(3, 1).astype('float') class TestAddInplaceBroadcastSuccess3(TestAddInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float') self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float') class TestAddInplaceBroadcastError(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(3, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') def test_broadcast_errors(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) def broadcast_shape_error(): x.add_(y) self.assertRaises(ValueError, broadcast_shape_error) paddle.enable_static() class TestAddInplaceBroadcastError2(TestAddInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') class TestAddInplaceBroadcastError3(TestAddInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') class TestComplexElementwiseAddOp(OpTest): def setUp(self): self.op_type = "elementwise_add" self.python_api = paddle.add self.dtype = np.float64 self.shape = (2, 3, 4, 5) self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.out = self.x + self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones( self.shape, self.dtype ) self.grad_x = self.grad_out self.grad_y = self.grad_out def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out], ) class TestRealComplexElementwiseAddOp(TestComplexElementwiseAddOp): def init_input_output(self): self.x = np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.out = self.x + self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones( self.shape, self.dtype ) self.grad_x = np.real(self.grad_out) self.grad_y = self.grad_out class TestBoolAddFloatElementwiseAddop(unittest.TestCase): def test_static_add(self): paddle.enable_static() a = 1.5 b = paddle.full([4, 5, 6], True, dtype='bool') c = a + b self.assertTrue(c.dtype == core.VarDesc.VarType.FP32) paddle.enable_static() def test_dygraph_add(self): paddle.disable_static() a = 1.5 b = paddle.full([2], True, dtype='bool') # special case: scalar + tensor(bool) c = a + b self.assertTrue(c.dtype == core.VarDesc.VarType.FP32) np_a = np.random.random((2, 3, 4)).astype(np.float64) np_b = np.random.random((2, 3, 4)).astype(np.float64) tensor_a = paddle.to_tensor(np_a, dtype="float32") tensor_b = paddle.to_tensor(np_b, dtype="float32") # normal case: tensor + tensor expect_out = np_a + np_b actual_out = tensor_a + tensor_b np.testing.assert_allclose(actual_out, expect_out) # normal case: tensor + scalar expect_out = np_a + 1 actual_out = tensor_a + 1 np.testing.assert_allclose(actual_out, expect_out) # normal case: scalar + tenor expect_out = 1 + np_a actual_out = 1 + tensor_a np.testing.assert_allclose(actual_out, expect_out) paddle.enable_static() class TestElementwiseAddop1(unittest.TestCase): def test_dygraph_add(self): paddle.disable_static() np_a = np.random.random((2, 3, 4)).astype(np.float32) np_b = np.random.random((2, 3, 4)).astype(np.float32) tensor_a = paddle.to_tensor(np_a, dtype="float32") tensor_b = paddle.to_tensor(np_b, dtype="float32") # normal case: nparray + tenor expect_out = np_a + np_b actual_out = np_a + tensor_b np.testing.assert_allclose(actual_out, expect_out) # normal case: tensor + nparray actual_out = tensor_a + np_b np.testing.assert_allclose(actual_out, expect_out) paddle.enable_static() class TestTensorAddNumpyScalar(unittest.TestCase): def test_float32_add(self): paddle.disable_static() a = paddle.full([4, 5, 6], 1.5, dtype='float32') b = np.array([1.5], dtype='float32')[0] c = a + b self.assertTrue(c.dtype == core.VarDesc.VarType.FP32) def test_float16_add(self): if not core.is_compiled_with_cuda(): return paddle.disable_static() a = paddle.full([4, 5, 6], 1.5, dtype='float16') b = np.array([1.5], dtype='float16')[0] c = a + b self.assertTrue(c.dtype == core.VarDesc.VarType.FP16) class TestTensorAddAPIWarnings(unittest.TestCase): def test_warnings(self): with warnings.catch_warnings(record=True) as context: warnings.simplefilter("always") paddle.enable_static() helper = LayerHelper("elementwise_add") data = paddle.static.data( name='data', shape=[None, 3, 32, 32], dtype='float32' ) out = helper.create_variable_for_type_inference(dtype=data.dtype) os.environ['FLAGS_print_extra_attrs'] = "1" helper.append_op( type="elementwise_add", inputs={'X': data, 'Y': data}, outputs={'Out': out}, attrs={'axis': 1, 'use_mkldnn': False}, ) self.assertTrue( "op elementwise_add's attr axis = 1 is not the default value: -1" in str(context[-1].message) ) os.environ['FLAGS_print_extra_attrs'] = "0" class TestTensorFloa32Bfloat16OrFloat16Add(unittest.TestCase): def _floa32_bfloat16_or_float16_add(self, y_dtype): paddle.disable_static() test_num = 5 val_range = 10000 shapes = [] for i in range(test_num): shape = [np.random.randint(val_range), np.random.randint(val_range)] shapes.append(shape) for i, shape in enumerate(shapes): x = paddle.randn(list(shape), dtype=paddle.float32) x_copy = copy.deepcopy(x) y = paddle.randn(list(shape), dtype=y_dtype) x.add_(y) x_copy.add_(paddle.cast(y, paddle.float32)) np.testing.assert_equal(x.numpy(), x_copy.numpy()) del x, x_copy @unittest.skipIf( not core.is_compiled_with_cuda() or core.cudnn_version() < 8100 or paddle.device.cuda.get_device_capability()[0] < 8, "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0", ) class TestTensorFloa32Bfloat16Add(TestTensorFloa32Bfloat16OrFloat16Add): def test_floa32_bfloat16_add(self): place = core.CUDAPlace(0) with fluid.dygraph.base.guard(place=place): self._floa32_bfloat16_or_float16_add(y_dtype=paddle.bfloat16) @unittest.skipIf( not core.is_compiled_with_cuda() or core.cudnn_version() < 8100, "only support compiled with CUDA and cudnn version need larger than 8.1.0", ) class TestTensorFloa32Float16Add(TestTensorFloa32Bfloat16OrFloat16Add): def test_floa32_float16_add(self): place = core.CUDAPlace(0) with fluid.dygraph.base.guard(place=place): self._floa32_bfloat16_or_float16_add(y_dtype=paddle.float16) if __name__ == '__main__': paddle.enable_static() unittest.main()