// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/slice_grad_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void SliceGradRawKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& out_grad, const std::vector& axes, const IntArray& starts, const IntArray& ends, const std::vector& infer_flags, const std::vector& decrease_axis, DenseTensor* input_grad) { const auto& onednn_engine = dev_ctx.GetEngine(); auto dx_dims = vectorize(input_grad->dims()); auto starts_vec = starts.GetData(); auto ends_vec = ends.GetData(); std::vector offsets(dx_dims.size(), 0); std::vector slice_dims(dx_dims); for (size_t i = 0; i < axes.size(); ++i) { starts_vec[i] = starts_vec[i] < 0 ? dx_dims[axes[i]] + starts_vec[i] : starts_vec[i]; ends_vec[i] = ends_vec[i] < 0 ? dx_dims[axes[i]] + ends_vec[i] : std::min(ends_vec[i], dx_dims[axes[i]]); offsets[axes[i]] = starts_vec[i]; slice_dims[axes[i]] = ends_vec[i] - starts_vec[i]; } dnnl::memory::data_type out_grad_type = funcs::ToOneDNNDataType(out_grad.dtype()); funcs::ReorderOneDNNHandler reorder_handler( slice_dims, out_grad.dtype(), out_grad_type, onednn_engine); auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(out_grad.mem_desc().reshape(slice_dims), funcs::to_void_cast(out_grad.data())); auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory( input_grad, dx_dims, funcs::GetPlainOneDNNFormat(dx_dims.size()), dev_ctx.GetPlace()); memset(input_grad->data(), 0, reorder_dst_memory_p->get_desc().get_size()); auto slice_mem_p = reorder_handler.AcquireSubmemory( slice_dims, offsets, reorder_dst_memory_p); auto reorder_p = reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p); auto& astream = OneDNNContext::tls().get_stream(); reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p); astream.wait(); input_grad->set_mem_desc(reorder_dst_memory_p->get_desc()); } } // namespace phi PD_REGISTER_KERNEL(slice_grad, OneDNN, ALL_LAYOUT, phi::SliceGradRawKernel, float, phi::dtype::bfloat16) {}