# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.dygraph.amp import AmpScaler __all__ = [] class GradScaler(AmpScaler): """ GradScaler is used for Auto-Mixed-Precision training in dynamic graph mode. It controls the scaling of loss, helps avoiding numerical overflow. The object of this class has two methods `scale()`, `minimize()`. `scale()` is used to multiply the loss by a scale ratio. `minimize()` is similar as `optimizer.minimize()`, performs parameters updating. Commonly, it is used together with `paddle.amp.auto_cast` to achieve Auto-Mixed-Precision in dynamic graph mode. Args: enable(bool, optional): Enable loss scaling or not. Default is True. init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15. incr_ratio(float, optional): The multiplier to use when increasing the loss scaling. Default is 2.0. decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing the loss scaling. Default is 0.5. incr_every_n_steps(int, optional): Increases loss scaling every n consecutive steps with finite gradients. Default is 1000. decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default is 2. use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True. Returns: An GradScaler object. Examples: .. code-block:: python import paddle model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True) optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) scaler = paddle.amp.GradScaler(init_loss_scaling=1024) data = paddle.rand([10, 3, 32, 32]) with paddle.amp.auto_cast(): conv = model(data) loss = paddle.mean(conv) scaled = scaler.scale(loss) # scale the loss scaled.backward() # do backward scaler.minimize(optimizer, scaled) # update parameters optimizer.clear_grad() """ def __init__(self, enable=True, init_loss_scaling=2.**15, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True): super(GradScaler, self).__init__(enable, init_loss_scaling, incr_ratio, decr_ratio, incr_every_n_steps, decr_every_n_nan_or_inf, use_dynamic_loss_scaling) def scale(self, var): """ Multiplies a Tensor by the scale factor and returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, output are returned unmodified. Args: var (Tensor): The tensor to scale. Returns: The scaled tensor or original tensor. Examples: .. code-block:: python import paddle model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True) optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) scaler = paddle.amp.GradScaler(init_loss_scaling=1024) data = paddle.rand([10, 3, 32, 32]) with paddle.amp.auto_cast(): conv = model(data) loss = paddle.mean(conv) scaled = scaler.scale(loss) # scale the loss scaled.backward() # do backward scaler.minimize(optimizer, scaled) # update parameters optimizer.clear_grad() """ return super(GradScaler, self).scale(var) def minimize(self, optimizer, *args, **kwargs): """ This function is similar as `optimizer.minimize()`, which performs parameters updating. If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped. Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters. Finally, the loss scaling ratio is updated. Args: optimizer(Optimizer): The optimizer used to update parameters. args: Arguments, which will be forward to `optimizer.minimize()`. kwargs: Keyword arguments, which will be forward to `optimizer.minimize()`. Examples: .. code-block:: python import paddle model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True) optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) scaler = paddle.amp.GradScaler(init_loss_scaling=1024) data = paddle.rand([10, 3, 32, 32]) with paddle.amp.auto_cast(): conv = model(data) loss = paddle.mean(conv) scaled = scaler.scale(loss) # scale the loss scaled.backward() # do backward scaler.minimize(optimizer, scaled) # update parameters optimizer.clear_grad() """ return super(GradScaler, self).minimize(optimizer, *args, **kwargs) def step(self, optimizer): """ This function is similar as `optimizer.step()`, which performs parameters updating. If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped. Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters. Args: optimizer(Optimizer): The optimizer used to update parameters. Examples: .. code-block:: python # required: gpu import paddle model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True) optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) scaler = paddle.amp.GradScaler(init_loss_scaling=1024) data = paddle.rand([10, 3, 32, 32]) with paddle.amp.auto_cast(): conv = model(data) loss = paddle.mean(conv) scaled = scaler.scale(loss) # scale the loss scaled.backward() # do backward scaler.step(optimizer) optimizer.clear_grad() """ if not self._enable: return optimizer.step() # unscale the grad self._unscale(optimizer) if self._found_inf: self._cache_founf_inf = True else: optimizer.step() self._cache_founf_inf = False if self._use_dynamic_loss_scaling: # uopdate the scale self._update() def is_enable(self): """ Enable loss scaling or not. Returns: bool: enable loss scaling return True else return False. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) enable = scaler.is_enable() print(enable) # True """ return super(GradScaler, self).is_enable() def is_use_dynamic_loss_scaling(self): """ Whether to use dynamic loss scaling. Returns: bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) use_dynamic_loss_scaling = scaler.is_use_dynamic_loss_scaling() print(use_dynamic_loss_scaling) # True """ return super(GradScaler, self).is_use_dynamic_loss_scaling() def get_init_loss_scaling(self): """ Return the initial loss scaling factor. Reurns: float: the initial loss scaling factor. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) init_loss_scaling = scaler.get_init_loss_scaling() print(init_loss_scaling) # 1024 """ return super(GradScaler, self).get_init_loss_scaling() def set_init_loss_scaling(self, new_init_loss_scaling): """ Set the initial loss scaling factor by `new_init_loss_scaling`. Args: new_init_loss_scaling(float): The new_init_loss_scaling used to update initial loss scaling factor. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) print(scaler.get_init_loss_scaling()) # 1024 new_init_loss_scaling = 1000 scaler.set_init_loss_scaling(new_init_loss_scaling) print(scaler.get_init_loss_scaling()) # 1000 """ super(GradScaler, self).set_init_loss_scaling(new_init_loss_scaling) def get_incr_ratio(self): """ Return the multiplier to use when increasing the loss scaling. Reurns: float: the multiplier to use when increasing the loss scaling. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) incr_ratio = scaler.get_incr_ratio() print(incr_ratio) # 2.0 """ return super(GradScaler, self).get_incr_ratio() def set_incr_ratio(self, new_incr_ratio): """ Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0. Args: new_incr_ratio(float): The new_incr_ratio used to update the multiplier to use when increasing the loss scaling. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) print(scaler.get_incr_ratio()) # 2.0 new_incr_ratio = 3.0 scaler.set_incr_ratio(new_incr_ratio) print(scaler.get_incr_ratio()) # 3.0 """ super(GradScaler, self).set_incr_ratio(new_incr_ratio) def get_decr_ratio(self): """ Get the less-than-one-multiplier to use when decreasing the loss scaling. Reurns: float: the less-than-one-multiplier to use when decreasing the loss scaling. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) decr_ratio = scaler.get_decr_ratio() print(decr_ratio) # 0.5 """ return super(GradScaler, self).get_decr_ratio() def set_decr_ratio(self, new_decr_ratio): """ Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0. Args: new_decr_ratio(float): The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) print(scaler.get_decr_ratio()) # 0.5 new_decr_ratio = 0.1 scaler.set_decr_ratio(new_decr_ratio) print(scaler.get_decr_ratio()) # 0.1 """ super(GradScaler, self).set_decr_ratio(new_decr_ratio) def get_incr_every_n_steps(self): """ Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients. Reurns: int: the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) incr_every_n_steps = scaler.get_incr_every_n_steps() print(incr_every_n_steps) # 1000 """ return super(GradScaler, self).get_incr_every_n_steps() def set_incr_every_n_steps(self, new_incr_every_n_steps): """ Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients. Args: new_incr_every_n_steps(int): The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) print(scaler.get_incr_every_n_steps()) # 1000 new_incr_every_n_steps = 2000 scaler.set_incr_every_n_steps(new_incr_every_n_steps) print(scaler.get_incr_every_n_steps()) # 2000 """ super(GradScaler, self).set_incr_every_n_steps(new_incr_every_n_steps) def get_decr_every_n_nan_or_inf(self): """ Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients. Reurns: int: the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) decr_every_n_nan_or_inf = scaler.get_decr_every_n_nan_or_inf() print(decr_every_n_nan_or_inf) # 2 """ return super(GradScaler, self).get_decr_every_n_nan_or_inf() def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf): """ Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients. Args: new_decr_every_n_nan_or_inf(int): The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) print(scaler.get_decr_every_n_nan_or_inf()) # 2 new_decr_every_n_nan_or_inf = 3 scaler.set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf) print(scaler.get_decr_every_n_nan_or_inf()) # 3 """ super(GradScaler, self).set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf) def state_dict(self): """ Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict. Reurns: A dict of scaler includes: init_loss_scaling (float, optional): The initial loss scaling factor. incr_ratio(float, optional): The multiplier to use when increasing the loss scaling. decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing the loss scaling. incr_every_n_steps(int, optional): Increases loss scaling every n consecutive steps with finite gradients. decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n accumulated steps with nan or inf gradients. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) scaler_state = scaler.state_dict() """ return super(GradScaler, self).state_dict() def load_state_dict(self, state_dict): """ Loads the scaler state. Args: state_dict(dict): scaler state. Should be an object returned from a call to `GradScaler.state_dict()`. Examples: .. code-block:: python # required: gpu,xpu import paddle scaler = paddle.amp.GradScaler(enable=True, init_loss_scaling=1024, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, use_dynamic_loss_scaling=True) scaler_state = scaler.state_dict() scaler.load_state_dict(scaler_state) """ super(GradScaler, self).load_state_dict(state_dict)