# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * ################################### Data Configuration ################################### TrainData(ProtoData(files = "trainer/tests/mnist.list")) ################################### Algorithm Configuration ################################### settings(batch_size = 128, learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) ################################### Network Configuration ################################### data = data_layer(name ="input", size=784) tmp = img_conv_layer(input=data, num_channels=1, filter_size=3, num_filters=32, padding=1, shared_biases=True, act=ReluActivation()) a1 = img_conv_layer(input=tmp, filter_size=1, num_filters=32, padding=0, shared_biases=True, act=ReluActivation()) a2 = img_conv_layer(input=tmp, filter_size=3, num_filters=32, padding=1, shared_biases=True, act=ReluActivation()) tmp = addto_layer(input=[a1, a2], act=ReluActivation(), bias_attr=False) tmp = img_pool_layer(input=tmp, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) b1 = img_conv_layer(input=tmp, filter_size=3, num_filters=32, padding=1, shared_biases=True, act=ReluActivation()) b1 = img_pool_layer(input=b1, pool_size=3, stride=2, padding=0, pool_type=MaxPooling()) b2 = img_conv_layer(input=tmp, filter_size=3, num_filters=64, padding=1, shared_biases=True, act=ReluActivation()) b2 = img_pool_layer(input=b2, pool_size=5, stride=2, padding=1, pool_type=MaxPooling()) tmp = concat_layer(input=[b1, b2]) tmp = img_pool_layer(input=tmp, num_channels=96, pool_size=3, stride=2, padding=1, pool_type=MaxPooling()) tmp = fc_layer(input=tmp, size=64, bias_attr=False, act=TanhActivation()) output = fc_layer(input=tmp, size=10, bias_attr=True, act=SoftmaxActivation()) lbl = data_layer(name ="label", size=10) cost = classification_cost(input=output, label=lbl) outputs(cost)