// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Dmitry Vyukov // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #pragma once #include #include #include #include "paddle/fluid/framework/new_executor/event_count.h" #include "paddle/fluid/framework/new_executor/run_queue.h" #include "paddle/fluid/framework/new_executor/thread_environment.h" namespace paddle { namespace framework { class TaskTracker { public: TaskTracker() : wait_empty_cv_(1) {} TaskTracker(const TaskTracker&) = delete; TaskTracker& operator=(const TaskTracker&) = delete; ~TaskTracker() = default; void AddCounter() { num_tasks_.fetch_add(1, std::memory_order_relaxed); } void SubCounter() { if (1 == num_tasks_.fetch_sub(1, std::memory_order_relaxed)) { wait_empty_cv_.Notify(true); } } // only one user can wait at any time void WaitTaskNumToZero() { bool waiting = false; if (!wait_empty_.compare_exchange_strong(waiting, true, std::memory_order_seq_cst, std::memory_order_relaxed)) { abort(); } EventCount::Waiter* w = wait_empty_cv_.GetWaiter(0); wait_empty_cv_.Prewait(); if (num_tasks_.load(std::memory_order_relaxed) == 0) { wait_empty_cv_.CancelWait(); } else { wait_empty_cv_.CommitWait(w); } wait_empty_.store(false); } private: alignas(64) std::atomic num_tasks_{0}; alignas(64) EventCount wait_empty_cv_; alignas(64) std::atomic wait_empty_{false}; }; template class ThreadPoolTempl { public: typedef typename Environment::Task Task; typedef RunQueue Queue; ThreadPoolTempl(int num_threads, bool allow_spinning, Environment env = Environment()) : env_(env), allow_spinning_(allow_spinning), global_steal_partition_(EncodePartition(0, num_threads_)), blocked_(0), num_tasks_(0), spinning_(0), done_(false), cancelled_(false), ec_(num_threads), num_threads_(num_threads), thread_data_(num_threads) { // Calculate coprimes of all numbers [1, num_threads]. // Coprimes are used for random walks over all threads in Steal // and NonEmptyQueueIndex. Iteration is based on the fact that if we take // a random starting thread index t and calculate num_threads - 1 subsequent // indices as (t + coprime) % num_threads, we will cover all threads without // repetitions (effectively getting a presudo-random permutation of thread // indices). assert(num_threads_ >= 1 && num_threads_ < kMaxThreads); all_coprimes_.reserve(num_threads_); for (int i = 1; i <= num_threads_; ++i) { all_coprimes_.emplace_back(); all_coprimes_.back().push_back(i); ComputeCoprimes(i, &(all_coprimes_.back())); } for (int i = 0; i < num_threads_; i++) { SetStealPartition(i, EncodePartition(0, num_threads_)); thread_data_[i].thread.reset( env_.CreateThread([this, i]() { WorkerLoop(i); })); } } ~ThreadPoolTempl() { done_ = true; // Now if all threads block without work, they will start exiting. // But note that threads can continue to work arbitrary long, // block, submit new work, unblock and otherwise live full life. if (!cancelled_) { ec_.Notify(true); } else { // Since we were cancelled, there might be entries in the queues. // Empty them to prevent their destructor from asserting. for (size_t i = 0; i < thread_data_.size(); i++) { thread_data_[i].queue.Flush(); } } // Join threads explicitly (by destroying) to avoid destruction order within // this class. for (size_t i = 0; i < thread_data_.size(); ++i) { thread_data_[i].thread.reset(); } } void SetStealPartitions( const std::vector>& partitions) { assert(partitions.size() == static_cast(num_threads_)); // Pass this information to each thread queue. for (int i = 0; i < num_threads_; i++) { const auto& pair = partitions[i]; unsigned start = pair.first, end = pair.second; AssertBounds(start, end); unsigned val = EncodePartition(start, end); SetStealPartition(i, val); } } void AddTask(std::function fn) { AddTaskWithHint(std::move(fn), 0, num_threads_); } void AddTaskWithHint(std::function fn, int start, int limit) { Task t = env_.CreateTask(std::move(fn)); PerThread* pt = GetPerThread(); uint64_t num_tasks = num_tasks_.fetch_add(1, std::memory_order_relaxed) + 1; if (pt->pool == this) { // Worker thread of this pool, push onto the thread's queue. Queue& q = thread_data_[pt->thread_id].queue; t = q.PushFront(std::move(t)); } else { // A free-standing thread (or worker of another pool), push onto a random // queue. assert(start < limit); assert(limit <= num_threads_); int num_queues = limit - start; int rnd = Rand(&pt->rand) % num_queues; assert(start + rnd < limit); Queue& q = thread_data_[start + rnd].queue; t = q.PushBack(std::move(t)); } // Note: below we touch this after making w available to worker threads. // Strictly speaking, this can lead to a racy-use-after-free. Consider that // Schedule is called from a thread that is neither main thread nor a worker // thread of this pool. Then, execution of w directly or indirectly // completes overall computations, which in turn leads to destruction of // this. We expect that such scenario is prevented by program, that is, // this is kept alive while any threads can potentially be in Schedule. if (!t.f) { if (num_tasks > num_threads_ - blocked_.load(std::memory_order_relaxed)) { ec_.Notify(false); } } else { num_tasks_.fetch_sub(1, std::memory_order_relaxed); env_.ExecuteTask(t); // Push failed, execute directly. } } void Cancel() { cancelled_ = true; done_ = true; // Wake up the threads without work to let them exit on their own. ec_.Notify(true); } size_t NumThreads() const { return num_threads_; } int CurrentThreadId() const { const PerThread* pt = const_cast(this)->GetPerThread(); if (pt->pool == this) { return pt->thread_id; } else { return -1; } } private: // Create a single atomic that encodes start and limit information for // each thread. // We expect num_threads_ < 65536, so we can store them in a single // std::atomic. // Exposed publicly as static functions so that external callers can reuse // this encode/decode logic for maintaining their own thread-safe copies of // scheduling and steal domain(s). static const int kMaxPartitionBits = 16; static const int kMaxThreads = 1 << kMaxPartitionBits; inline unsigned EncodePartition(unsigned start, unsigned limit) { return (start << kMaxPartitionBits) | limit; } inline void DecodePartition(unsigned val, unsigned* start, unsigned* limit) { *limit = val & (kMaxThreads - 1); val >>= kMaxPartitionBits; *start = val; } void AssertBounds(int start, int end) { assert(start >= 0); assert(start < end); // non-zero sized partition assert(end <= num_threads_); } inline void SetStealPartition(size_t i, unsigned val) { thread_data_[i].steal_partition.store(val, std::memory_order_relaxed); } inline unsigned GetStealPartition(int i) { return thread_data_[i].steal_partition.load(std::memory_order_relaxed); } inline void ComputeCoprimes(int n, std::vector* coprimes) { for (int i = 1; i <= n; i++) { unsigned a = i; unsigned b = n; // If GCD(a, b) == 1, then a and b are coprimes. while (b != 0) { unsigned tmp = a; a = b; b = tmp % b; } if (a == 1) { coprimes->push_back(i); } } } typedef typename Environment::EnvThread Thread; struct PerThread { constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) {} ThreadPoolTempl* pool; // Parent pool, or null for normal threads. uint64_t rand; // Random generator state. int thread_id; // Worker thread index in pool. }; struct ThreadData { constexpr ThreadData() : thread(), steal_partition(0), queue() {} std::unique_ptr thread; std::atomic steal_partition; Queue queue; }; Environment env_; const bool allow_spinning_; std::vector> all_coprimes_; unsigned global_steal_partition_; std::atomic blocked_; std::atomic num_tasks_; std::atomic spinning_; std::atomic done_; std::atomic cancelled_; EventCount ec_; const int num_threads_; std::vector thread_data_; // Main worker thread loop. void WorkerLoop(int thread_id) { PerThread* pt = GetPerThread(); pt->pool = this; pt->rand = GlobalThreadIdHash(); pt->thread_id = thread_id; Queue& q = thread_data_[thread_id].queue; EventCount::Waiter* waiter = ec_.GetWaiter(thread_id); // TODO(dvyukov,rmlarsen): The time spent in NonEmptyQueueIndex() is // proportional to num_threads_ and we assume that new work is scheduled at // a constant rate, so we set spin_count to 5000 / num_threads_. The // constant was picked based on a fair dice roll, tune it. const int spin_count = allow_spinning_ && num_threads_ > 0 ? 5000 / num_threads_ : 0; if (num_threads_ == 1) { // For num_threads_ == 1 there is no point in going through the expensive // steal loop. Moreover, since NonEmptyQueueIndex() calls PopBack() on the // victim queues it might reverse the order in which ops are executed // compared to the order in which they are added, which tends to be // counter-productive for the types of I/O workloads the single thread // pools tend to be used for. while (!cancelled_) { Task t = q.PopFront(); for (int i = 0; i < spin_count && !t.f; i++) { if (!cancelled_.load(std::memory_order_relaxed)) { t = q.PopFront(); } } if (!t.f) { if (!WaitForWork(waiter, &t)) { return; } } if (t.f) { env_.ExecuteTask(t); num_tasks_.fetch_sub(1, std::memory_order_relaxed); } } } else { while (!cancelled_) { Task t = q.PopFront(); if (!t.f) { t = LocalSteal(); if (!t.f) { t = GlobalSteal(); if (!t.f) { if (allow_spinning_) { for (int i = 0; i < spin_count && !t.f; i++) { if (!cancelled_.load(std::memory_order_relaxed)) { t = GlobalSteal(); } else { return; } } } if (!t.f) { if (!WaitForWork(waiter, &t)) { return; } } } } } if (t.f) { env_.ExecuteTask(t); num_tasks_.fetch_sub(1, std::memory_order_relaxed); } } } } // Steal tries to steal work from other worker threads in the range [start, // limit) in best-effort manner. Task Steal(unsigned start, unsigned limit) { PerThread* pt = GetPerThread(); const size_t size = limit - start; unsigned r = Rand(&pt->rand); // Reduce r into [0, size) range, this utilizes trick from // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ assert(all_coprimes_[size - 1].size() < (1 << 30)); unsigned victim = ((uint64_t)r * (uint64_t)size) >> 32; unsigned index = ((uint64_t)all_coprimes_[size - 1].size() * (uint64_t)r) >> 32; unsigned inc = all_coprimes_[size - 1][index]; for (unsigned i = 0; i < size; i++) { assert(start + victim < limit); Task t = thread_data_[start + victim].queue.PopBack(); if (t.f) { return t; } victim += inc; if (victim >= size) { victim -= size; } } return Task(); } // Steals work within threads belonging to the partition. Task LocalSteal() { PerThread* pt = GetPerThread(); unsigned partition = GetStealPartition(pt->thread_id); // If thread steal partition is the same as global partition, there is no // need to go through the steal loop twice. if (global_steal_partition_ == partition) return Task(); unsigned start, limit; DecodePartition(partition, &start, &limit); AssertBounds(start, limit); return Steal(start, limit); } // Steals work from any other thread in the pool. Task GlobalSteal() { return Steal(0, num_threads_); } // WaitForWork blocks until new work is available (returns true), or if it is // time to exit (returns false). Can optionally return a task to execute in t // (in such case t.f != nullptr on return). bool WaitForWork(EventCount::Waiter* waiter, Task* t) { assert(t != nullptr && !t->f); // We already did best-effort emptiness check in Steal, so prepare for // blocking. ec_.Prewait(); // Now do a reliable emptiness check. int victim = NonEmptyQueueIndex(); if (victim != -1) { ec_.CancelWait(); if (cancelled_) { return false; } else { *t = thread_data_[victim].queue.PopBack(); return true; } } // Number of blocked threads is used as termination condition. // If we are shutting down and all worker threads blocked without work, // that's we are done. blocked_++; if (done_ && blocked_ == static_cast(num_threads_)) { ec_.CancelWait(); // Almost done, but need to re-check queues. // Consider that all queues are empty and all worker threads are preempted // right after incrementing blocked_ above. Now a free-standing thread // submits work and calls destructor (which sets done_). If we don't // re-check queues, we will exit leaving the work unexecuted. if (NonEmptyQueueIndex() != -1) { // Note: we must not pop from queues before we decrement blocked_, // otherwise the following scenario is possible. Consider that instead // of checking for emptiness we popped the only element from queues. // Now other worker threads can start exiting, which is bad if the // work item submits other work. So we just check emptiness here, // which ensures that all worker threads exit at the same time. blocked_--; return true; } // Reached stable termination state. ec_.Notify(true); return false; } ec_.CommitWait(waiter); blocked_--; return true; } int NonEmptyQueueIndex() { PerThread* pt = GetPerThread(); // We intentionally design NonEmptyQueueIndex to steal work from // anywhere in the queue so threads don't block in WaitForWork() forever // when all threads in their partition go to sleep. Steal is still local. const size_t size = thread_data_.size(); unsigned r = Rand(&pt->rand); unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()]; unsigned victim = r % size; for (unsigned i = 0; i < size; i++) { if (!thread_data_[victim].queue.Empty()) { return victim; } victim += inc; if (victim >= size) { victim -= size; } } return -1; } static inline uint64_t GlobalThreadIdHash() { return std::hash()(std::this_thread::get_id()); } inline PerThread* GetPerThread() { static thread_local PerThread per_thread_; PerThread* pt = &per_thread_; return pt; } static inline unsigned Rand(uint64_t* state) { uint64_t current = *state; // Update the internal state *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; // Generate the random output (using the PCG-XSH-RS scheme) return static_cast((current ^ (current >> 22)) >> (22 + (current >> 61))); } }; using NonblockingThreadPool = ThreadPoolTempl; } // namespace framework } // namespace paddle