# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import six import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest, skip_check_grad_ci import paddle import paddle.nn.functional as F def ref_prelu(x, weight): x_t = x.copy() weight = weight.reshape(1, -1, 1, 1) neg_indices = x <= 0 assert x.shape == neg_indices.shape x_t[neg_indices] = (x_t * weight)[neg_indices] return (x_t, ) def ref_prelu_nn(x, num_parameters, init): weight_np = np.full((num_parameters), init) return ref_prelu(x, weight_np) class TestFunctionalPReluAPI(unittest.TestCase): def setUp(self): self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda( ) else paddle.CPUPlace() self.x_np = np.random.uniform(-1., 1., [1, 2, 3, 4]).astype('float32') self.weight_np_0 = np.random.randn(1).astype('float32') self.weight_np_1 = np.random.randn(self.x_np.shape[1]).astype('float32') def static_check(self, weight_np): with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.x_np.shape, 'float32') weight = paddle.fluid.data('Alpha', weight_np.shape, 'float32') out = F.prelu(x, weight) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x_np, 'Alpha': weight_np}, fetch_list=[out]) out_ref = ref_prelu(self.x_np, weight_np) self.assertEqual(np.allclose(out_ref, res[0]), True) def dygraph_check(self, weight_np): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) weight = paddle.to_tensor(weight_np) out = F.prelu(x, weight) out_ref = ref_prelu(self.x_np, weight_np) self.assertEqual(np.allclose(out_ref, out.numpy()), True) paddle.enable_static() def test_static_api(self): self.static_check(self.weight_np_0) self.static_check(self.weight_np_1) def test_dygraph_api(self): self.dygraph_check(self.weight_np_0) self.dygraph_check(self.weight_np_1) def test_error(self): with paddle.static.program_guard(paddle.static.Program()): weight_fp32 = paddle.fluid.data( name='weight_fp32', shape=[1], dtype='float32') # The input type must be Variable. self.assertRaises(TypeError, F.prelu, x=1, weight=weight_fp32) # The input dtype must be float16, float32, float64. x_int32 = paddle.fluid.data( name='x_int32', shape=[2, 3], dtype='int32') self.assertRaises(TypeError, F.prelu, x=x_int32, weight=weight_fp32) # support the input dtype is float16 x_fp16 = paddle.fluid.data( name='x_fp16', shape=[2, 3], dtype='float16') F.prelu(x=x_fp16, weight=weight_fp32) class TestNNPReluAPI(unittest.TestCase): def setUp(self): self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda( ) else paddle.CPUPlace() self.x_np = np.ones([1, 2, 3, 4]).astype('float32') def test_static_api(self): startup_program = paddle.static.Program() train_program = paddle.static.Program() with paddle.static.program_guard(train_program, startup_program): x = paddle.fluid.data( name='X', shape=self.x_np.shape, dtype='float32') m = paddle.nn.PReLU() out = m(x) exe = paddle.static.Executor(self.place) exe.run(startup_program) res = exe.run(train_program, feed={'X': self.x_np}, fetch_list=[out]) out_ref = ref_prelu_nn(self.x_np, 1, 0.25) self.assertEqual(np.allclose(out_ref, res[0]), True) def test_dygraph_api(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) m = paddle.nn.PReLU() out = m(x) out_ref = ref_prelu_nn(self.x_np, 1, 0.25) self.assertEqual(np.allclose(out_ref, out.numpy()), True) x = paddle.to_tensor(self.x_np) m = paddle.nn.PReLU(num_parameters=self.x_np.shape[1]) out = m(x) out_ref = ref_prelu_nn(self.x_np, self.x_np.shape[1], 0.25) self.assertEqual(np.allclose(out_ref, out.numpy()), True) x = paddle.to_tensor(self.x_np) m = paddle.nn.PReLU(init=0.5) out = m(x) out_ref = ref_prelu_nn(self.x_np, 1, 0.5) self.assertEqual(np.allclose(out_ref, out.numpy()), True) x = paddle.to_tensor(self.x_np) m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(name="weight")) out = m(x) out_ref = ref_prelu_nn(self.x_np, 1, 0.25) self.assertEqual(np.allclose(out_ref, out.numpy()), True) x = paddle.to_tensor(self.x_np) m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.5))) out = m(x) out_ref = ref_prelu_nn(self.x_np, 1, 0.5) self.assertEqual(np.allclose(out_ref, out.numpy()), True) paddle.enable_static() class PReluTest(OpTest): def setUp(self): self.init_dtype() self.init_input_shape() self.init_attr() self.op_type = "prelu" x_np = np.random.uniform(-1, 1, self.x_shape).astype(self.dtype) # Since zero point in prelu is not differentiable, avoid randomize # zero. x_np[np.abs(x_np) < 0.005] = 0.02 if self.attrs == {'mode': "all"}: alpha_np = np.random.uniform(-1, -0.5, (1)) elif self.attrs == {'mode': "channel"}: alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1]) else: alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:]) alpha_np = alpha_np.astype(self.dtype) self.inputs = {'X': x_np, 'Alpha': alpha_np} # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:]) # since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1) reshaped_alpha = self.inputs['Alpha'] if self.attrs == {'mode': "channel"}: reshaped_alpha = np.reshape( self.inputs['Alpha'], [1, self.x_shape[1]] + [1] * len(self.x_shape[2:])) out_np = np.maximum(self.inputs['X'], 0.) out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha assert out_np is not self.inputs['X'] self.outputs = {'Out': out_np} def init_dtype(self): self.dtype = np.float64 def init_input_shape(self): self.x_shape = [2, 100, 3, 4] def init_attr(self): self.attrs = {'mode': "channel"} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'Alpha'], 'Out') @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAll(PReluTest): def init_input_shape(self): self.x_shape = [2, 3, 4, 5] def init_attr(self): self.attrs = {'mode': "all"} class TestModeElt(PReluTest): def init_input_shape(self): self.x_shape = [3, 2, 5, 10] def init_attr(self): self.attrs = {'mode': "element"} @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAllRank3(PReluTest): def init_input_shape(self): self.x_shape = [1, 200, 3] def init_attr(self): self.attrs = {'mode': "all"} @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAllRank6(PReluTest): def init_input_shape(self): self.x_shape = [1, 2, 3, 4, 5, 6] def init_attr(self): self.attrs = {'mode': "all"} class TestModeChannelRank3(PReluTest): def init_input_shape(self): self.x_shape = [1, 200, 3] def init_attr(self): self.attrs = {'mode': "channel"} class TestModeChannelRank6(PReluTest): def init_input_shape(self): self.x_shape = [1, 100, 2, 2, 2, 2] def init_attr(self): self.attrs = {'mode': "channel"} class TestModeElementRank3(PReluTest): def init_input_shape(self): self.x_shape = [3, 10, 10] def init_attr(self): self.attrs = {'mode': "element"} class TestModeElementRank6(PReluTest): def init_input_shape(self): self.x_shape = [3, 2, 2, 4, 5, 2] def init_attr(self): self.attrs = {'mode': "element"} def create_test_fp16_class(parent, check_grad=True, atol=1e-3, max_relative_error=0.05): @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestPReluFp16Case(parent): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=atol) def test_check_grad(self): place = core.CUDAPlace(0) if core.is_float16_supported(place) and check_grad: self.check_grad_with_place( place, ['X', 'Alpha'], 'Out', max_relative_error=max_relative_error) cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op") TestPReluFp16Case.__name__ = cls_name globals()[cls_name] = TestPReluFp16Case create_test_fp16_class(TestModeElt) create_test_fp16_class(TestModeAllRank3) create_test_fp16_class(TestModeAllRank6) create_test_fp16_class(TestModeChannelRank3) create_test_fp16_class(TestModeChannelRank6) create_test_fp16_class(TestModeElementRank3) create_test_fp16_class(TestModeElementRank6) def prelu_t(x, mode, param_attr=None, name=None): helper = fluid.layer_helper.LayerHelper('prelu', **locals()) alpha_shape = [1, x.shape[1], 1, 1] dtype = helper.input_dtype(input_param_name='x') alpha = helper.create_parameter( attr=helper.param_attr, shape=alpha_shape, dtype='float32', is_bias=False, default_initializer=fluid.initializer.ConstantInitializer(0.25)) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prelu", inputs={"X": x, 'Alpha': alpha}, attrs={"mode": mode}, outputs={"Out": out}) return out # error message test if mode is not one of 'all', 'channel', 'element' class TestModeError(unittest.TestCase): def test_mode_error(self): main_program = Program() with fluid.program_guard(main_program, Program()): x = fluid.data(name='x', shape=[2, 3, 4, 5]) try: y = prelu_t(x, 'any') except Exception as e: assert (e.args[0].find('InvalidArgument') != -1) if __name__ == "__main__": unittest.main()