# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.distributed import fleet class TestDistTraining(unittest.TestCase): def setUp(self): strategy = fleet.DistributedStrategy() self.model_parallel_size = 2 strategy.hybrid_configs = { "dp_degree": 1, "mp_degree": self.model_parallel_size, "pp_degree": 1, } fleet.init(is_collective=True, strategy=strategy) def test_cuda_rng_tracker(self): seed_1 = 2021 seed_2 = 1024 size = [20, 15] paddle.seed(seed_1) target_11 = paddle.randn(size, "float32") target_12 = paddle.randn(size, "float32") paddle.seed(seed_2) target_21 = paddle.randn(size, "float32") target_22 = paddle.randn(size, "float32") paddle.seed(seed_1) fleet.meta_parallel.get_rng_state_tracker().add("test", seed_2) result_11 = paddle.randn(size, "float32") with fleet.meta_parallel.get_rng_state_tracker().rng_state("test"): result_21 = paddle.randn(size, "float32") result_12 = paddle.randn(size, "float32") with fleet.meta_parallel.get_rng_state_tracker().rng_state("test"): result_22 = paddle.randn(size, "float32") np.testing.assert_allclose(result_11.numpy(), target_11.numpy()) np.testing.assert_allclose(result_12.numpy(), target_12.numpy()) np.testing.assert_allclose(result_21.numpy(), target_21.numpy()) np.testing.assert_allclose(result_22.numpy(), target_22.numpy()) if __name__ == '__main__': unittest.main()