# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from hybrid_parallel_mp_model import TestDistMPTraining import paddle # log = logging.getLogger("HybridParallel") # log.setLevel(logging.WARNING) class TestMPClipGrad(TestDistMPTraining): def build_optimizer(self, model): grad_clip = paddle.nn.ClipGradByGlobalNorm(2.0) scheduler = paddle.optimizer.lr.ExponentialDecay( learning_rate=0.001, gamma=0.999, verbose=True ) optimizer = paddle.optimizer.SGD( scheduler, grad_clip=grad_clip, parameters=model.parameters() ) return optimizer if __name__ == "__main__": unittest.main()