# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci import paddle from paddle.fluid import core class TestElementwiseOp(OpTest): def init_data(self): # If x and y have the same value, the max() is not differentiable. # So we generate test data by the following method # to avoid them being too close to each other. self.x = np.random.uniform(0.1, 1, [13, 17]).astype("float64") sgn = np.random.choice([-1, 1], [13, 17]).astype("float64") self.y = self.x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype( "float64" ) def setUp(self): self.init_data() self.op_type = "elementwise_max" self.prim_op_type = "prim" self.enable_cinn = False self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.inputs = {'X': self.x, 'Y': self.y} self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} def test_check_output(self): if hasattr(self, 'attrs'): self.check_output(check_dygraph=False) else: self.check_output() def test_check_grad_normal(self): if hasattr(self, 'attrs'): if self.attrs['axis'] == -1: self.check_grad( ['X', 'Y'], 'Out', check_dygraph=False, check_prim=True ) else: self.check_grad(['X', 'Y'], 'Out', check_dygraph=False) else: self.check_grad(['X', 'Y'], 'Out', check_prim=True) def test_check_grad_ingore_x(self): if hasattr(self, 'attrs') and self.attrs['axis'] != -1: self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"), check_dygraph=False, ) else: self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"), check_prim=True, ) def test_check_grad_ingore_y(self): if hasattr(self, 'attrs') and self.attrs['axis'] != -1: self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'), check_dygraph=False, ) else: self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'), check_prim=True, ) class TestElementwiseFP16Op(TestElementwiseOp): def init_data(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float16) sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float16) self.y = self.x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype( np.float16 ) def setUp(self): self.init_data() self.op_type = "elementwise_max" self.prim_op_type = "prim" self.enable_cinn = False self.python_api = paddle.maximum self.dtype = np.float16 self.public_python_api = paddle.maximum self.inputs = {'X': self.x, 'Y': self.y} self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} class TestElementwiseMaxOp_ZeroDim1(TestElementwiseOp): def init_data(self): self.x = np.random.uniform(0.1, 1, []).astype("float64") self.y = np.random.uniform(0.1, 1, []).astype("float64") class TestElementwiseMaxFP16Op_ZeroDim1(TestElementwiseFP16Op): def init_data(self): self.x = np.random.uniform(0.1, 1, []).astype(np.float16) self.y = np.random.uniform(0.1, 1, []).astype(np.float16) class TestElementwiseMaxOp_ZeroDim2(TestElementwiseOp): def init_data(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype("float64") self.y = np.random.uniform(0.1, 1, []).astype("float64") class TestElementwiseMaxFP16Op_ZeroDim2(TestElementwiseFP16Op): def init_data(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float16) self.y = np.random.uniform(0.1, 1, []).astype(np.float16) class TestElementwiseMaxOp_ZeroDim3(TestElementwiseOp): def init_data(self): self.x = np.random.uniform(0.1, 1, []).astype("float64") self.y = np.random.uniform(0.1, 1, [13, 17]).astype("float64") class TestElementwiseMaxFP16Op_ZeroDim3(TestElementwiseFP16Op): def init_data(self): self.x = np.random.uniform(0.1, 1, []).astype(np.float16) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float16) @unittest.skipIf( core.is_compiled_with_cuda() and ( core.cudnn_version() < 8100 or paddle.device.cuda.get_device_capability()[0] < 8 ), "run test when gpu is availble and the minimum cudnn version is 8.1.0 and gpu's compute capability is at least 8.0.", ) class TestElementwiseBF16Op(OpTest): def init_data(self): # If x and y have the same value, the max() is not differentiable. # So we generate test data by the following method # to avoid them being too close to each other. self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float32) self.y = self.x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype( np.float32 ) def setUp(self): self.init_data() self.op_type = "elementwise_max" self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.prim_op_type = "prim" self.enable_cinn = False self.dtype = np.uint16 self.inputs = { 'X': convert_float_to_uint16(self.x), 'Y': convert_float_to_uint16(self.y), } self.outputs = { 'Out': convert_float_to_uint16(np.maximum(self.x, self.y)) } def test_check_output(self): if hasattr(self, 'attrs'): self.check_output(check_dygraph=False) else: self.check_output(check_dygraph=True) def test_check_grad_normal(self): if hasattr(self, 'attrs'): # check_prim=False, bfloat16 is not supported in `less_equal` self.check_grad( ['X', 'Y'], 'Out', numeric_grad_delta=0.05, check_dygraph=False ) else: self.check_grad(['X', 'Y'], 'Out', numeric_grad_delta=0.05) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', numeric_grad_delta=0.05, no_grad_set=set("X") ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', numeric_grad_delta=0.05, no_grad_set=set('Y') ) class TestElementwiseMaxBF16Op_ZeroDim1(TestElementwiseBF16Op): def init_data(self): self.x = np.random.uniform(0.1, 1, []).astype("float32") self.y = np.random.uniform(0.1, 1, []).astype("float32") class TestElementwiseMaxBF16Op_scalar(TestElementwiseBF16Op): def init_data(self): self.x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float32") self.y = np.array([0.5]).astype("float32") self.__class__.no_need_check_grad = True @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestElementwiseMaxOp_scalar(TestElementwiseOp): def init_data(self): self.x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float64") self.y = np.array([0.5]).astype("float64") @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestElementwiseMaxFP16Op_scalar(TestElementwiseFP16Op): def init_data(self): self.x = np.random.random_integers(-5, 5, [2, 3, 20]).astype(np.float16) self.y = np.array([0.5]).astype(np.float16) class TestElementwiseMaxOp_Vector(TestElementwiseOp): def init_data(self): self.x = np.random.random((100,)).astype("float64") sgn = np.random.choice([-1, 1], (100,)).astype("float64") self.y = self.x + sgn * np.random.uniform(0.1, 1, (100,)).astype( "float64" ) class TestElementwiseMaxFP16Op_Vector(TestElementwiseFP16Op): def init_data(self): self.x = np.random.random((100,)).astype(np.float16) sgn = np.random.choice([-1, 1], (100,)).astype(np.float16) self.y = self.x + sgn * np.random.uniform(0.1, 1, (100,)).astype( np.float16 ) class TestElementwiseMaxBF16Op_Vector(TestElementwiseBF16Op): def init_data(self): self.x = np.random.random((100,)).astype("float32") sgn = np.random.choice([-1, 1], (100,)).astype("float32") self.y = self.x + sgn * np.random.uniform(0.1, 1, (100,)).astype( "float32" ) class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_max" self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.prim_op_type = "prim" x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float64) sgn = np.random.choice([-1, 1], (100,)).astype(np.float64) y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype( np.float64 ) self.inputs = {'X': x, 'Y': y} self.outputs = { 'Out': np.maximum( self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100) ) } class TestElementwiseMaxFP16Op_broadcast_2(TestElementwiseFP16Op): def setUp(self): self.op_type = "elementwise_max" self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.prim_op_type = "prim" self.dtype = np.float16 x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float16) sgn = np.random.choice([-1, 1], (100,)).astype(np.float16) y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype( np.float16 ) self.inputs = {'X': x, 'Y': y} self.outputs = { 'Out': np.maximum( self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100) ) } class TestElementwiseMaxOp_broadcast_4(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_max" self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.prim_op_type = "prim" x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float64) sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float64) y = x + sgn * np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float64) self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} class TestElementwiseFP16Op_broadcast_4(TestElementwiseFP16Op): def setUp(self): self.op_type = "elementwise_max" self.python_api = paddle.maximum self.public_python_api = paddle.maximum self.prim_op_type = "prim" self.dtype = np.float16 x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float16) sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float16) y = x + sgn * np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float16) self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} if __name__ == '__main__': unittest.main()