// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "boost/optional.hpp" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/math/concat_and_split.h" namespace paddle { namespace operators { namespace detail { template inline framework::LoD ConcatLoD(const Container &xs, std::vector *xs_in_order) { std::vector result; result.resize(xs[0].get().lod()[0].size()); for (size_t i = 1; i < result.size(); ++i) { size_t sum = 0; for (size_t j = 0; j < xs.size(); ++j) { auto &x_lod = xs[j].get().lod()[0]; const framework::Tensor &tensor = xs[j].get(); if (x_lod[i - 1] < x_lod[i]) { xs_in_order->emplace_back(tensor.Slice(x_lod[i - 1], x_lod[i])); } sum += x_lod[i]; } result[i] = sum; } framework::LoD lod; lod.emplace_back(result); return lod; } } // namespace detail template class SeqConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto xs = detail::VectorRef(context.MultiInput("X"), "Cannot find multiple input X"); auto &out = detail::Ref(context.Output("Out"), "Cannot find output"); size_t lod_size = 0; for (auto &x : xs) { if (lod_size == 0) { PADDLE_ENFORCE_EQ(x.get().lod().empty(), false, "Input(X) Tensor of SequenceConcatOp does not " "contain LoD information."); lod_size = x.get().lod()[0].size(); } else { PADDLE_ENFORCE_EQ( lod_size, x.get().lod()[0].size(), "The number of sequence must be same between each input"); } } PADDLE_ENFORCE_NE(lod_size, 0, "Each input must have sequence information"); std::vector x_in_order; out.set_lod(detail::ConcatLoD(xs, &x_in_order)); out.mutable_data(context.GetPlace()); math::ConcatFunctor functor; functor(context.template device_context(), x_in_order, 0, &out); } }; template class SeqConcatGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto xs = context.MultiInput("X"); auto dxs = context.MultiOutput(framework::GradVarName("X")); PADDLE_ENFORCE_EQ(xs.size(), dxs.size()); for (size_t i = 0; i < dxs.size(); ++i) { if (dxs[i] != nullptr) { dxs[i]->set_lod(xs[i]->lod()); dxs[i]->mutable_data(context.GetPlace()); } } std::vector sliced_x; std::vector> sliced_dx; for (size_t i = 1; i < xs[0]->lod()[0].size(); ++i) { for (size_t j = 0; j < xs.size(); ++j) { const framework::LoDTensor *x = xs[j]; framework::DDim x_dims = x->dims(); framework::LoDTensor *dx = dxs[j]; auto &x_lod = x->lod()[0]; if (x_lod[i - 1] == x_lod[i]) continue; auto prev_lod = x_lod[i - 1]; auto next_lod = x_lod[i]; x_dims[0] = next_lod - prev_lod; sliced_x.emplace_back(); sliced_x.back().Resize(x_dims); if (dx) { sliced_dx.emplace_back(dx->Slice(prev_lod, next_lod)); } else { sliced_dx.emplace_back(boost::none); } } } std::vector sliced_x_ptr; sliced_x_ptr.reserve(sliced_x.size()); for (auto &x : sliced_x) { sliced_x_ptr.emplace_back(&x); } std::vector sliced_dx_ptr; sliced_dx_ptr.reserve(sliced_dx.size()); for (auto &dx : sliced_dx) { if (dx) { sliced_dx_ptr.emplace_back(&dx.get()); } } math::SplitFunctor functor; functor(context.template device_context(), detail::Ref( context.Input(framework::GradVarName("Out")), "Sequence Concat OG must be set"), sliced_x_ptr, 0, &sliced_dx_ptr); } }; } // namespace operators } // namespace paddle