<!DOCTYPE html> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Dataset — PaddlePaddle 文档</title> <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" /> <link rel="index" title="索引" href="../../../genindex.html"/> <link rel="search" title="搜索" href="../../../search.html"/> <link rel="top" title="PaddlePaddle 文档" href="../../../index.html"/> <link rel="up" title="Data Reader Interface and DataSets" href="../data.html"/> <link rel="next" title="Training and Inference" href="../run_logic.html"/> <link rel="prev" title="Image Interface" href="image.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" /> <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" /> <script> var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); </script> <script src="../../../_static/js/modernizr.min.js"></script> </head> <body class="wy-body-for-nav" role="document"> <header class="site-header"> <div class="site-logo"> <a href="/"><img src="../../../_static/images/PP_w.png"></a> </div> <div class="site-nav-links"> <div class="site-menu"> <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a> <div class="language-switcher dropdown"> <a type="button" data-toggle="dropdown"> <span>English</span> <i class="fa fa-angle-up"></i> <i class="fa fa-angle-down"></i> </a> <ul class="dropdown-menu"> <li><a href="/doc_cn">中文</a></li> <li><a href="/doc">English</a></li> </ul> </div> <ul class="site-page-links"> <li><a href="/">Home</a></li> </ul> </div> <div class="doc-module"> <ul class="current"> <li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li> <li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li> <li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li> <li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li> </ul> <div role="search"> <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get"> <input type="text" name="q" placeholder="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> </div> </header> <div class="main-content-wrap"> <nav class="doc-menu-vertical" role="navigation"> <ul class="current"> <li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">分布式训练</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/fabric_cn.html">fabric集群</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/openmpi_cn.html">openmpi集群</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/k8s_cn.html">kubernetes单机</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed分布式</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/k8s_aws_cn.html">AWS上运行kubernetes集群训练</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/capi/index_cn.html">PaddlePaddle C-API</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/capi/compile_paddle_lib_cn.html">编译 PaddlePaddle 预测库</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/capi/workflow_of_capi_cn.html">C-API 使用流程</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li> </ul> </li> <li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current"> <li class="toctree-l2"><a class="reference internal" href="../model_configs.html">模型配置</a><ul> <li class="toctree-l3"><a class="reference internal" href="../config/activation.html">Activation</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/layer.html">Layers</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/evaluators.html">Evaluators</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/optimizer.html">Optimizer</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/pooling.html">Pooling</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/networks.html">Networks</a></li> <li class="toctree-l3"><a class="reference internal" href="../config/attr.html">Parameter Attribute</a></li> </ul> </li> <li class="toctree-l2 current"><a class="reference internal" href="../data.html">数据访问</a><ul class="current"> <li class="toctree-l3"><a class="reference internal" href="data_reader.html">Data Reader Interface</a></li> <li class="toctree-l3"><a class="reference internal" href="image.html">Image Interface</a></li> <li class="toctree-l3 current"><a class="current reference internal" href="#">Dataset</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li> <li class="toctree-l2"><a class="reference internal" href="../fluid.html">Fluid</a><ul> <li class="toctree-l3"><a class="reference internal" href="../fluid/layers.html">layers</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/data_feeder.html">data_feeder</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/executor.html">executor</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/initializer.html">initializer</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/evaluator.html">evaluator</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/nets.html">nets</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/optimizer.html">optimizer</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/param_attr.html">param_attr</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/profiler.html">profiler</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/regularizer.html">regularizer</a></li> <li class="toctree-l3"><a class="reference internal" href="../fluid/io.html">io</a></li> </ul> </li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li> </ul> </li> </ul> </nav> <section class="doc-content-wrap"> <div role="navigation" aria-label="breadcrumbs navigation"> <ul class="wy-breadcrumbs"> <li><a href="../../index_cn.html">API</a> > </li> <li><a href="../data.html">Data Reader Interface and DataSets</a> > </li> <li>Dataset</li> </ul> </div> <div class="wy-nav-content" id="doc-content"> <div class="rst-content"> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <div class="section" id="dataset"> <h1>Dataset<a class="headerlink" href="#dataset" title="永久链接至标题">¶</a></h1> <p>Dataset package.</p> <div class="section" id="mnist"> <h2>mnist<a class="headerlink" href="#mnist" title="永久链接至标题">¶</a></h2> <p>MNIST dataset.</p> <p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and parse training set and test set into paddle reader creators.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>MNIST training set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>MNIST test set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="cifar"> <h2>cifar<a class="headerlink" href="#cifar" title="永久链接至标题">¶</a></h2> <p>CIFAR dataset.</p> <p>This module will download dataset from <a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a> and parse train/test set into paddle reader creators.</p> <p>The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.</p> <p>The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>CIFAR-100 training set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 99].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>CIFAR-100 test set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>CIFAR-10 training set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>CIFAR-10 test set creator.</p> <p>It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator.</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="conll05"> <h2>conll05<a class="headerlink" href="#conll05" title="永久链接至标题">¶</a></h2> <p>Conll05 dataset. Paddle semantic role labeling Book and demo use this dataset as an example. Because Conll05 is not free in public, the default downloaded URL is test set of Conll05 (which is public). Users can change URL and MD5 to their Conll dataset. And a pre-trained word vector model based on Wikipedia corpus is used to initialize SRL model.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get the word, verb and label dictionary of Wikipedia corpus.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_embedding</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get the trained word vector based on Wikipedia corpus.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Conll05 test set creator.</p> <p>Because the training dataset is not free, the test dataset is used for training. It returns a reader creator, each sample in the reader is nine features, including sentence sequence, predicate, predicate context, predicate context flag and tagged sequence.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> </div> <div class="section" id="imdb"> <h2>imdb<a class="headerlink" href="#imdb" title="永久链接至标题">¶</a></h2> <p>IMDB dataset.</p> <p>This module downloads IMDB dataset from <a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/">http://ai.stanford.edu/%7Eamaas/data/sentiment/</a>. This dataset contains a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. Besides, this module also provides API for building dictionary.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>pattern</em>, <em>cutoff</em><span class="sig-paren">)</span></dt> <dd><p>Build a word dictionary from the corpus. Keys of the dictionary are words, and values are zero-based IDs of these words.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt> <dd><p>IMDB training set creator.</p> <p>It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) – word dictionary</td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt> <dd><p>IMDB test set creator.</p> <p>It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1].</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) – word dictionary</td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="imikolov"> <h2>imikolov<a class="headerlink" href="#imikolov" title="永久链接至标题">¶</a></h2> <p>imikolov’s simple dataset.</p> <p>This module will download dataset from <a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a> and parse training set and test set into paddle reader creators.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>min_word_freq=50</em><span class="sig-paren">)</span></dt> <dd><p>Build a word dictionary from the corpus, Keys of the dictionary are words, and values are zero-based IDs of these words.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em>, <em>data_type=1</em><span class="sig-paren">)</span></dt> <dd><p>imikolov training set creator.</p> <p>It returns a reader creator, each sample in the reader is a word ID tuple.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>word_idx</strong> (<em>dict</em>) – word dictionary</li> <li><strong>n</strong> (<em>int</em>) – sliding window size if type is ngram, otherwise max length of sequence</li> <li><strong>data_type</strong> (<em>member variable of DataType</em><em> (</em><em>NGRAM</em><em> or </em><em>SEQ</em><em>)</em>) – data type (ngram or sequence)</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Training reader creator</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em>, <em>data_type=1</em><span class="sig-paren">)</span></dt> <dd><p>imikolov test set creator.</p> <p>It returns a reader creator, each sample in the reader is a word ID tuple.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>word_idx</strong> (<em>dict</em>) – word dictionary</li> <li><strong>n</strong> (<em>int</em>) – sliding window size if type is ngram, otherwise max length of sequence</li> <li><strong>data_type</strong> (<em>member variable of DataType</em><em> (</em><em>NGRAM</em><em> or </em><em>SEQ</em><em>)</em>) – data type (ngram or sequence)</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Test reader creator</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="movielens"> <h2>movielens<a class="headerlink" href="#movielens" title="永久链接至标题">¶</a></h2> <p>Movielens 1-M dataset.</p> <p>Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000 movies, which was collected by GroupLens Research. This module will download Movielens 1-M dataset from <a class="reference external" href="http://files.grouplens.org/datasets/movielens/ml-1m.zip">http://files.grouplens.org/datasets/movielens/ml-1m.zip</a> and parse training set and test set into paddle reader creators.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">get_movie_title_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get movie title dictionary.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_movie_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get the maximum value of movie id.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_user_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get the maximum value of user id.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_job_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get the maximum value of job id.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_categories</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get movie categoriges dictionary.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">user_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get user info dictionary.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Get movie info dictionary.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> <dl class="class"> <dt> <em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">MovieInfo</code><span class="sig-paren">(</span><em>index</em>, <em>categories</em>, <em>title</em><span class="sig-paren">)</span></dt> <dd><p>Movie id, title and categories information are stored in MovieInfo.</p> </dd></dl> <dl class="class"> <dt> <em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">UserInfo</code><span class="sig-paren">(</span><em>index</em>, <em>gender</em>, <em>age</em>, <em>job_id</em><span class="sig-paren">)</span></dt> <dd><p>User id, gender, age, and job information are stored in UserInfo.</p> </dd></dl> </div> <div class="section" id="sentiment"> <h2>sentiment<a class="headerlink" href="#sentiment" title="永久链接至标题">¶</a></h2> <p>The script fetch and preprocess movie_reviews data set that provided by NLTK</p> <p>TODO(yuyang18): Complete dataset.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">get_word_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Sorted the words by the frequency of words which occur in sample :return:</p> <blockquote> <div>words_freq_sorted</div></blockquote> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Default training set reader creator</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>Default test set reader creator</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="uci-housing"> <h2>uci_housing<a class="headerlink" href="#uci-housing" title="永久链接至标题">¶</a></h2> <p>UCI Housing dataset.</p> <p>This module will download dataset from <a class="reference external" href="https://archive.ics.uci.edu/ml/machine-learning-databases/housing/">https://archive.ics.uci.edu/ml/machine-learning-databases/housing/</a> and parse training set and test set into paddle reader creators.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>UCI_HOUSING training set creator.</p> <p>It returns a reader creator, each sample in the reader is features after normalization and price number.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>UCI_HOUSING test set creator.</p> <p>It returns a reader creator, each sample in the reader is features after normalization and price number.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> </div> <div class="section" id="wmt14"> <h2>wmt14<a class="headerlink" href="#wmt14" title="永久链接至标题">¶</a></h2> <p>WMT14 dataset. The original WMT14 dataset is too large and a small set of data for set is provided. This module will download dataset from <a class="reference external" href="http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz">http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz</a> and parse training set and test set into paddle reader creators.</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">train</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt> <dd><p>WMT14 training set creator.</p> <p>It returns a reader creator, each sample in the reader is source language word ID sequence, target language word ID sequence and next word ID sequence.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Training reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">test</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt> <dd><p>WMT14 test set creator.</p> <p>It returns a reader creator, each sample in the reader is source language word ID sequence, target language word ID sequence and next word ID sequence.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">Test reader creator</td> </tr> <tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">callable</td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format</p> </dd></dl> </div> <div class="section" id="wmt16"> <h2>wmt16<a class="headerlink" href="#wmt16" title="永久链接至标题">¶</a></h2> <p>ACL2016 Multimodal Machine Translation. Please see this website for more details: <a class="reference external" href="http://www.statmt.org/wmt16/multimodal-task.html#task1">http://www.statmt.org/wmt16/multimodal-task.html#task1</a></p> <p>If you use the dataset created for your task, please cite the following paper: Multi30K: Multilingual English-German Image Descriptions.</p> <dl class="docutils"> <dt>@article{elliott-EtAl:2016:VL16,</dt> <dd>author = {{Elliott}, D. and {Frank}, S. and {Sima”an}, K. and {Specia}, L.}, title = {Multi30K: Multilingual English-German Image Descriptions}, booktitle = {Proceedings of the 6th Workshop on Vision and Language}, year = {2016}, pages = {70–74}, year = 2016</dd> </dl> <p>}</p> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">train</code><span class="sig-paren">(</span><em>src_dict_size</em>, <em>trg_dict_size</em>, <em>src_lang='en'</em><span class="sig-paren">)</span></dt> <dd><p>WMT16 train set reader.</p> <p>This function returns the reader for train data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence.</p> <p>NOTE: The original like for training data is: <a class="reference external" href="http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz">http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz</a></p> <p>paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses’s tokenization script: <a class="reference external" href="https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl">https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl</a></p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>src_dict_size</strong> (<em>int</em>) – Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>trg_dict_size</strong> (<em>int</em>) – Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>src_lang</strong> (<em>string</em>) – A string indicating which language is the source language. Available options are: “en” for English and “de” for Germany.</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The train reader.</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">test</code><span class="sig-paren">(</span><em>src_dict_size</em>, <em>trg_dict_size</em>, <em>src_lang='en'</em><span class="sig-paren">)</span></dt> <dd><p>WMT16 test set reader.</p> <p>This function returns the reader for test data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence.</p> <p>NOTE: The original like for test data is: <a class="reference external" href="http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz">http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz</a></p> <p>paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses’s tokenization script: <a class="reference external" href="https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl">https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl</a></p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>src_dict_size</strong> (<em>int</em>) – Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>trg_dict_size</strong> (<em>int</em>) – Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>src_lang</strong> (<em>string</em>) – A string indicating which language is the source language. Available options are: “en” for English and “de” for Germany.</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The test reader.</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">validation</code><span class="sig-paren">(</span><em>src_dict_size</em>, <em>trg_dict_size</em>, <em>src_lang='en'</em><span class="sig-paren">)</span></dt> <dd><p>WMT16 validation set reader.</p> <p>This function returns the reader for validation data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence.</p> <p>NOTE: The original like for validation data is: <a class="reference external" href="http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz">http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz</a></p> <p>paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses’s tokenization script: <a class="reference external" href="https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl">https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl</a></p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>src_dict_size</strong> (<em>int</em>) – Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>trg_dict_size</strong> (<em>int</em>) – Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word.</li> <li><strong>src_lang</strong> (<em>string</em>) – A string indicating which language is the source language. Available options are: “en” for English and “de” for Germany.</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The validation reader.</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">callable</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><em>lang</em>, <em>dict_size</em>, <em>reverse=False</em><span class="sig-paren">)</span></dt> <dd><p>return the word dictionary for the specified language.</p> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <li><strong>lang</strong> (<em>string</em>) – A string indicating which language is the source language. Available options are: “en” for English and “de” for Germany.</li> <li><strong>dict_size</strong> (<em>int</em>) – Size of the specified language dictionary.</li> <li><strong>reverse</strong> (<em>bool</em>) – If reverse is set to False, the returned python dictionary will use word as key and use index as value. If reverse is set to True, the returned python dictionary will use index as key and word as value.</li> </ul> </td> </tr> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The word dictionary for the specific language.</p> </td> </tr> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">dict</p> </td> </tr> </tbody> </table> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">fetch</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt> <dd><p>download the entire dataset.</p> </dd></dl> <dl class="function"> <dt> <code class="descclassname">paddle.v2.dataset.wmt16.</code><code class="descname">convert</code><span class="sig-paren">(</span><em>path</em>, <em>src_dict_size</em>, <em>trg_dict_size</em>, <em>src_lang</em><span class="sig-paren">)</span></dt> <dd><p>Converts dataset to recordio format.</p> </dd></dl> </div> </div> </div> </div> <footer> <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> <a href="../run_logic.html" class="btn btn-neutral float-right" title="Training and Inference" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a> <a href="image.html" class="btn btn-neutral" title="Image Interface" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a> </div> <hr/> <div role="contentinfo"> <p> © Copyright 2016, PaddlePaddle developers. </p> </div> Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT:'../../../', VERSION:'', COLLAPSE_INDEX:false, FILE_SUFFIX:'.html', HAS_SOURCE: true, SOURCELINK_SUFFIX: ".txt", }; </script> <script type="text/javascript" src="../../../_static/jquery.js"></script> <script type="text/javascript" src="../../../_static/underscore.js"></script> <script type="text/javascript" src="../../../_static/doctools.js"></script> <script type="text/javascript" src="../../../_static/translations.js"></script> <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script> <script type="text/javascript" src="../../../_static/js/theme.js"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script> <script src="../../../_static/js/paddle_doc_init.js"></script> </body> </html>