import unittest import numpy as np import paddle.v2.framework.core as core import paddle.v2.framework.create_op_creation_methods as creation from op_test_util import OpTestMeta def stable_softmax(x): """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x) exps = np.exp(shiftx) return exps / np.sum(exps) class TestSoftmaxOp(unittest.TestCase): __metaclass__ = OpTestMeta def setUp(self): self.type = "softmax" self.X = np.random.random((32, 100)).astype("float32") self.Y = np.apply_along_axis(stable_softmax, 1, self.X) class TestSoftmaxGradOp(unittest.TestCase): def test_softmax_grad(self): op = creation.op_creations.softmax(X="X", Y="Y") backward_op = core.Operator.backward(op, set()) self.assertEqual(backward_op.type(), "softmax_grad") expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).''' self.assertEqual(expected, str(backward_op)) batch_size = 3 class_num = 5 # Initialize X and add 1e-2 for numerical stability Y = np.random.rand(batch_size, class_num).astype(np.float32) Y = Y + 1e-2 dY = np.random.rand(batch_size, class_num).astype(np.float32) # Reference implementation of cross entropy with soft labels def label_softmax_grad(Y, dY): dX = Y * 0.0 for i in range(batch_size): d = np.dot(Y[i, :], dY[i, :]) dX[i, :] = Y[i, :] * (dY[i, :] - d) return dX expected = label_softmax_grad(Y, dY) scope = core.Scope() places = [] places.append(core.CPUPlace()) if core.is_compile_gpu(): places.append(core.GPUPlace(0)) for place in places: y = scope.new_var("Y") y_tensor = y.get_tensor() y_tensor.set_dims([batch_size, class_num]) y_tensor.alloc_float(place) y_tensor.set(Y, place) dy = scope.new_var("Y@GRAD") dy_tensor = dy.get_tensor() dy_tensor.set_dims([batch_size, class_num]) dy_tensor.alloc_float(place) dy_tensor.set(dY, place) x = scope.new_var("X") dx = scope.new_var("X@GRAD") tensor = scope.find_var("X@GRAD").get_tensor() backward_op.infer_shape(scope) self.assertEqual([batch_size, class_num], tensor.shape()) ctx = core.DeviceContext.create(place) backward_op.run(scope, ctx) actual = np.array(tensor) np.testing.assert_almost_equal(actual, expected, decimal=3) if __name__ == '__main__': unittest.main()