// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template struct SubFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a - b; } }; template class ElementwiseSubCompute : public KernelLite { public: using param_t = operators::ElementwiseParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.x86_device_context); param.Out->template mutable_data(); paddle::operators::ElementwiseComputeEx, platform::CPUDeviceContext, T>( *context.x86_execution_context, ¶m.X->raw_tensor(), ¶m.Y->raw_tensor(), param.axis, SubFunctor(), ¶m.Out->raw_tensor()); } // TargetType target() const override; // PrecisionType precision() const override; virtual ~ElementwiseSubCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle // float REGISTER_LITE_KERNEL(square, kHost, kFloat, kNCHW, paddle::lite::kernels::x86::ElementwiseSubCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();