// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/impl/expand_kernel_impl.h" namespace phi { template void ExpandBackward(const Context& ctx, const DenseTensor& out_grad, const std::vector& reshape_dims_vec, const std::vector& reduce_dims_vec, DenseTensor* in_grad) { size_t reshape_size = reshape_dims_vec.size(); size_t reduce_size = reduce_dims_vec.size(); ctx.template Alloc(in_grad); in_grad->data(); auto x_grad = EigenVector::Flatten(*in_grad); Eigen::DSizes reshape_dims; for (size_t i = 0; i < reshape_size; ++i) { reshape_dims[i] = reshape_dims_vec[i]; } Eigen::DSizes reduce_dims; for (size_t i = 0; i < reduce_size; ++i) { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad0 = EigenVector::Flatten(out_grad); auto& place = *ctx.eigen_device(); phi::funcs::EigenBroadcastGrad, T, Dims>::Eval( place, x_grad, out_grad0, reduce_dims, reshape_dims); } template void ExpandGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& shape, DenseTensor* in_grad) { auto expand_shape = shape.GetData(); auto x_dims = x.dims(); auto vec_in_dims = phi::vectorize(x_dims); auto diff = expand_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); // 1. reshape_dims_vec is the broadcast parameter. // 2. reduce_dims_vec is the dimension parameter to compute gradients. For // each dimension expanded, the gradients should be summed to original // size. std::vector repeat_times(vec_in_dims.size()); for (size_t i = 0; i < vec_in_dims.size(); ++i) { if (expand_shape[i] < 0) { repeat_times[i] = 1; } else { repeat_times[i] = expand_shape[i] / vec_in_dims[i]; } } std::vector reshape_dims_vec; std::vector reduce_dims_vec; for (size_t i = 0; i < repeat_times.size(); ++i) { reduce_dims_vec.push_back(reshape_dims_vec.size()); reshape_dims_vec.push_back(repeat_times[i]); reshape_dims_vec.push_back(vec_in_dims[i]); } int dims = reduce_dims_vec.size(); bool just_copy = true; for (size_t i = 0; i < repeat_times.size(); i++) { if (repeat_times[i] != 1) { just_copy = false; break; } } // no need reduce, just copy if (just_copy) { phi::Copy(ctx, out_grad, ctx.GetPlace(), false, in_grad); } else { PADDLE_ENFORCE_GE(dims, 1, phi::errors::InvalidArgument( "The rank of the input 'Out@GRAD' for " "expand_v2_grad op must be greater than or " "equal to 1, but the value received is %d.", dims)); PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED, phi::errors::InvalidArgument( "The rank of the input 'Out@GRAD' for " "expand_v2_grad op must be less than or equal " "to %d, but the value received is %d.", MAX_RANK_SUPPORTED, dims)); switch (dims) { case 1: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; case 2: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; case 3: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; case 4: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; case 5: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; case 6: ExpandBackward( ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad); break; default: PADDLE_THROW(phi::errors::InvalidArgument( "Only support tensor with rank being between 1 and 6. But " "received tensor's rank = %d.", dims)); } } } } // namespace phi