// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/top_k_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template static void FullTopKAssign(const Type& input_height, const Type& input_width, const int& input_dim, const DenseTensor* input, const DenseTensor* indices, T* output_data, const int& k) { #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (Type i = 0; i < input_height; ++i) { if (input_dim == 1) { auto e_input = EigenVector::Flatten(*input); auto e_indices = EigenVector::Flatten(*indices); for (Type j = 0; j < k; ++j) { output_data[i * input_width + e_indices(j)] = e_input(j); } } else { auto e_input = EigenMatrix::Reshape(*input, input_dim - 1); auto e_indices = EigenMatrix::Reshape(*indices, input_dim - 1); for (Type j = 0; j < k; ++j) { output_data[i * input_width + e_indices(i, j)] = e_input(i, j); } } } } template void TopkGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& indices, const DenseTensor& out_grad, const Scalar& k_scalar, int axis, bool largest, bool sorted, DenseTensor* x_grad) { const auto& in_dims = x.dims(); const auto& out_dims = indices.dims(); int k = k_scalar.to(); // axis < 0, get the real axis axis = (axis < 0) ? (in_dims.size() + axis) : axis; T* x_grad_data = dev_ctx.template Alloc(x_grad); if (axis + 1 == in_dims.size()) { // allocate the memory for the input_grad // assign the out_grad to input_grad directly const int64_t input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t input_width = in_dims[in_dims.size() - 1]; // init the output grad with 0, because some input elements has no grad memset(x_grad_data, 0, x_grad->numel() * sizeof(T)); // Assign the output_grad to input_grad FullTopKAssign(input_height, input_width, in_dims.size(), &out_grad, &indices, x_grad_data, k); } else { // can not assign grad to input_grad, must do the transpose std::vector trans; for (int i = 0; i < axis; i++) { trans.emplace_back(i); } trans.emplace_back(out_dims.size() - 1); for (int i = axis + 1; i < out_dims.size() - 1; i++) { trans.emplace_back(i); } trans.emplace_back(axis); phi::DDim trans_dims(out_dims); phi::DDim trans_in_dims(in_dims); for (size_t i = 0; i < trans.size(); i++) { trans_dims[i] = out_dims[trans[i]]; trans_in_dims[i] = in_dims[trans[i]]; } // transpose the out_grad, indices DenseTensor trans_dO; DenseTensor trans_ind; trans_dO.Resize(trans_dims); trans_ind.Resize(trans_dims); dev_ctx.template Alloc(&trans_dO); dev_ctx.template Alloc(&trans_ind); int ndims = trans.size(); // Do transpose funcs::TransCompute( ndims, dev_ctx, out_grad, &trans_dO, trans); funcs::TransCompute( ndims, dev_ctx, indices, &trans_ind, trans); const int64_t input_height = phi::product( phi::slice_ddim(trans_in_dims, 0, trans_in_dims.size() - 1)); const int64_t input_width = trans_in_dims[trans_in_dims.size() - 1]; // Assign the out_grad to tranpose input_grad DenseTensor tmp_out; tmp_out.Resize(trans_in_dims); T* t_out = dev_ctx.template Alloc(&tmp_out); memset(t_out, 0, x_grad->numel() * sizeof(T)); FullTopKAssign(input_height, input_width, in_dims.size(), &trans_dO, &trans_ind, t_out, k); // Transpose back funcs::TransCompute( ndims, dev_ctx, tmp_out, x_grad, trans); } } } // namespace phi PD_REGISTER_KERNEL(topk_grad, CPU, ALL_LAYOUT, phi::TopkGradKernel, float, double, int32_t, int64_t) {}