// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h" #include #include "paddle/fluid/framework/lod_tensor.h" namespace paddle { namespace framework { namespace ir { static int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope, bool with_fc_bias) { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); // Create pattern. patterns::FC fc_pattern(pattern, name_scope); patterns::GRU gru_pattern(pattern, name_scope); PDNode* x = pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable(); auto* fc_out = fc_pattern(x, with_fc_bias); fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. gru_pattern(fc_out); // Create New OpDesc auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h, Node* bias, Node* hidden, Node* fc_bias) { OpDesc op_desc; op_desc.SetType("fusion_gru"); #define NEW_NAME(x) name_scope + "/at." #x ".new" #define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()}); SET_IN(X, x); SET_IN(WeightX, weight_x); SET_IN(WeightH, weight_h); if (with_fc_bias) { op_desc.SetInput("Bias", {NEW_NAME(bias) + bias->Name()}); } else { SET_IN(Bias, bias); } #undef SET_IN op_desc.SetInput("H0", {}); op_desc.SetOutput("Hidden", {hidden->Name()}); op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse")); // TODO(TJ): This should be a option for infer op_desc.SetAttr("use_seq", true); #define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)}) SET_IMTERMEDIATE_OUT(ReorderedH0); SET_IMTERMEDIATE_OUT(XX); SET_IMTERMEDIATE_OUT(BatchedInput); SET_IMTERMEDIATE_OUT(BatchedOut); #undef SET_IMTERMEDIATE_OUT auto* op = graph->CreateOpNode(&op_desc); PADDLE_ENFORCE(graph->Has(kParamScopeAttr)); auto* scope = graph->Get(kParamScopeAttr); PADDLE_ENFORCE(scope); if (with_fc_bias) { // Fusion GRU bias = fcbias + grubias auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias->Name()); auto* out_bias_tensor = fusion_bias_var->GetMutable(); PADDLE_ENFORCE(fusion_bias_var); auto* gru_bias_var = scope->FindVar(bias->Name()); auto* fc_bias_var = scope->FindVar(fc_bias->Name()); PADDLE_ENFORCE(gru_bias_var); PADDLE_ENFORCE(fc_bias_var); const auto& gru_bias_tenosr = gru_bias_var->Get(); const auto& fc_bias_tensor = fc_bias_var->Get(); // new bias = fc bias + gru bias out_bias_tensor->Resize(gru_bias_tenosr.dims()); auto* data = out_bias_tensor->mutable_data(platform::CPUPlace()); for (int i = 0; i < out_bias_tensor->numel(); i++) { data[i] = fc_bias_tensor.data()[i] + gru_bias_tenosr.data()[i]; } } #undef GET_NODE #define NEW_IMTERMEDIATE_OUT(key) \ scope->Var(NEW_NAME(key))->GetMutable() NEW_IMTERMEDIATE_OUT(ReorderedH0); NEW_IMTERMEDIATE_OUT(XX); NEW_IMTERMEDIATE_OUT(BatchedInput); NEW_IMTERMEDIATE_OUT(BatchedOut); #undef NEW_NAME #undef NEW_IMTERMEDIATE_OUT IR_NODE_LINK_TO(x, op); IR_NODE_LINK_TO(weight_x, op); IR_NODE_LINK_TO(weight_h, op); IR_NODE_LINK_TO(bias, op); // actually should link to new bias if have IR_NODE_LINK_TO(op, hidden); // h0? return op; }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { auto* x_n = subgraph.at(x); GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern); // nodes need be removed GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchGate, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchGate, gru_pattern); if (with_fc_bias) { GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias); // Remove unneeded nodes. std::unordered_set marked_nodes( {mul, gru, elementwise_add, fc_bias, fc_out, mul_out, BatchGate, BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } else { gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr); // Remove unneeded nodes. std::unordered_set marked_nodes( {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } #undef GET_NODE ++fusion_count; }; gpd(graph, handler); return fusion_count; } std::unique_ptr MulGRUFusePass::ApplyImpl( std::unique_ptr graph) const { FusePassBase::Init(name_scope_, graph.get()); int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(), false /*with_fc_bias*/); AddStatis(fusion_count); return graph; } std::unique_ptr FCGRUFusePass::ApplyImpl( std::unique_ptr graph) const { FusePassBase::Init(name_scope_, graph.get()); int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(), true /*with_fc_bias*/); AddStatis(fusion_count); return graph; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass); REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);