// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/backends/gpu/gpu_context.h" #ifndef PADDLE_WITH_XPU_KP #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #endif #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/impl/elementwise_kernel_impl.h" #include "paddle/phi/kernels/legacy/elementwise_kernel.h" namespace phi { template void MaximumKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { int axis = -1; MaximumRawKernel(dev_ctx, x, y, axis, out); } template void MinimumKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { int axis = -1; MinimumRawKernel(dev_ctx, x, y, axis, out); } template void RemainderKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { int axis = -1; RemainderRawKernel(dev_ctx, x, y, axis, out); } template void FloorDivideKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { int axis = -1; FloorDivideRawKernel(dev_ctx, x, y, axis, out); } // Create the definition of Heaviside template void HeavisideKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::ElementwiseHeavisideFunctor()); } template void ElementwisePowKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { int axis = -1; ElementwisePowRawKernel(dev_ctx, x, y, axis, out); } } // namespace phi #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(maximum, KPS, ALL_LAYOUT, phi::MaximumKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(minimum, KPS, ALL_LAYOUT, phi::MinimumKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(remainder, GPU, ALL_LAYOUT, phi::RemainderKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL( floor_divide, KPS, ALL_LAYOUT, phi::FloorDivideKernel, int, int64_t) {} PD_REGISTER_KERNEL(elementwise_pow, KPS, ALL_LAYOUT, phi::ElementwisePowKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {} #endif #ifdef PADDLE_WITH_XPU_KP PD_REGISTER_KERNEL(maximum, KPS, ALL_LAYOUT, phi::MaximumKernel, float) {} PD_REGISTER_KERNEL(minimum, KPS, ALL_LAYOUT, phi::MinimumKernel, float) {} PD_REGISTER_KERNEL(floor_divide, KPS, ALL_LAYOUT, phi::FloorDivideKernel, int) { } PD_REGISTER_KERNEL( elementwise_pow, KPS, ALL_LAYOUT, phi::ElementwisePowKernel, float) {} #else using float16 = phi::dtype::float16; using bfloat16 = phi::dtype::bfloat16; using complex64 = ::phi::dtype::complex; using complex128 = ::phi::dtype::complex; PD_REGISTER_KERNEL(fmax, KPS, ALL_LAYOUT, phi::FMaxKernel, float, double, int, float16, bfloat16, int64_t) {} PD_REGISTER_KERNEL(fmin, KPS, ALL_LAYOUT, phi::FMinKernel, float, double, int, float16, bfloat16, int64_t) {} PD_REGISTER_KERNEL(heaviside, KPS, ALL_LAYOUT, phi::HeavisideKernel, float, double, int, float16, bfloat16, int64_t) {} #endif