# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np from eager_op_test import OpTest import paddle paddle.enable_static() paddle.seed(100) def output_hist(out, lam, a, b): prob = [] bin = [] for i in range(a, b + 1): prob.append((lam**i) * math.exp(-lam) / math.factorial(i)) bin.append(i) bin.append(b + 0.1) hist, _ = np.histogram(out, bin) hist = hist.astype("float32") hist = hist / float(out.size) return hist, prob class TestPoissonOp1(OpTest): def setUp(self): self.op_type = "poisson" self.python_api = paddle.tensor.poisson self.config() self.attrs = {} self.inputs = {'X': np.full([2048, 1024], self.lam, dtype=self.dtype)} self.outputs = {'Out': np.ones([2048, 1024], dtype=self.dtype)} def config(self): self.lam = 10 self.a = 5 self.b = 15 self.dtype = "float64" def verify_output(self, outs): hist, prob = output_hist(np.array(outs[0]), self.lam, self.a, self.b) np.testing.assert_allclose(hist, prob, rtol=0.01) def test_check_output(self): self.check_output_customized(self.verify_output) def test_check_grad_normal(self): self.check_grad( ['X'], 'Out', user_defined_grads=[np.zeros([2048, 1024], dtype=self.dtype)], user_defined_grad_outputs=[ np.random.rand(2048, 1024).astype(self.dtype) ], ) class TestPoissonOp2(TestPoissonOp1): def config(self): self.lam = 5 self.a = 1 self.b = 8 self.dtype = "float32" class TestPoissonAPI(unittest.TestCase): def test_static(self): with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x_np = np.random.rand(10, 10) x = paddle.static.data(name="x", shape=[10, 10], dtype='float64') y = paddle.poisson(x) exe = paddle.static.Executor() y_np = exe.run( paddle.static.default_main_program(), feed={"x": x_np}, fetch_list=[y], ) self.assertTrue(np.min(y_np) >= 0) def test_dygraph(self): with paddle.fluid.dygraph.base.guard(): x = paddle.randn([10, 10], dtype='float32') y = paddle.poisson(x) self.assertTrue(np.min(y.numpy()) >= 0) x = paddle.randn([10, 10], dtype='float32') x.stop_gradient = False y = paddle.poisson(x) y.backward() self.assertTrue(np.min(y.numpy()) >= 0) np.testing.assert_array_equal(np.zeros_like(x), x.gradient()) def test_fixed_random_number(self): # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' if not paddle.is_compiled_with_cuda(): return print("Test Fixed Random number on GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(2021) x = paddle.full([32, 3, 1024, 768], 10.0, dtype="float32") y = paddle.poisson(x) y_np = y.numpy() expect = [ 13.0, 13.0, 11.0, 8.0, 12.0, 6.0, 9.0, 15.0, 16.0, 6.0, 13.0, 12.0, 9.0, 15.0, 17.0, 8.0, 11.0, 16.0, 11.0, 10.0, ] np.testing.assert_array_equal(y_np[0, 0, 0, 0:20], expect) expect = [ 15.0, 7.0, 12.0, 8.0, 14.0, 10.0, 10.0, 11.0, 11.0, 11.0, 21.0, 6.0, 9.0, 13.0, 13.0, 11.0, 6.0, 9.0, 12.0, 12.0, ] np.testing.assert_array_equal(y_np[8, 1, 300, 200:220], expect) expect = [ 10.0, 15.0, 9.0, 6.0, 4.0, 13.0, 10.0, 10.0, 13.0, 12.0, 9.0, 7.0, 10.0, 14.0, 7.0, 10.0, 8.0, 5.0, 10.0, 14.0, ] np.testing.assert_array_equal(y_np[16, 1, 600, 400:420], expect) expect = [ 10.0, 9.0, 14.0, 12.0, 8.0, 9.0, 7.0, 8.0, 11.0, 10.0, 13.0, 8.0, 12.0, 9.0, 7.0, 8.0, 11.0, 11.0, 12.0, 5.0, ] np.testing.assert_array_equal(y_np[24, 2, 900, 600:620], expect) expect = [ 15.0, 5.0, 11.0, 13.0, 12.0, 12.0, 13.0, 16.0, 9.0, 9.0, 7.0, 9.0, 13.0, 11.0, 15.0, 6.0, 11.0, 9.0, 10.0, 10.0, ] np.testing.assert_array_equal(y_np[31, 2, 1023, 748:768], expect) x = paddle.full([16, 1024, 1024], 5.0, dtype="float32") y = paddle.poisson(x) y_np = y.numpy() expect = [ 4.0, 5.0, 2.0, 9.0, 8.0, 7.0, 4.0, 7.0, 4.0, 7.0, 6.0, 3.0, 10.0, 7.0, 5.0, 7.0, 2.0, 5.0, 5.0, 6.0, ] np.testing.assert_array_equal(y_np[0, 0, 100:120], expect) expect = [ 1.0, 4.0, 8.0, 11.0, 6.0, 5.0, 4.0, 4.0, 7.0, 4.0, 4.0, 7.0, 11.0, 6.0, 5.0, 3.0, 4.0, 6.0, 3.0, 3.0, ] np.testing.assert_array_equal(y_np[4, 300, 300:320], expect) expect = [ 7.0, 5.0, 4.0, 6.0, 8.0, 5.0, 6.0, 7.0, 7.0, 7.0, 3.0, 10.0, 5.0, 10.0, 4.0, 5.0, 8.0, 7.0, 5.0, 7.0, ] np.testing.assert_array_equal(y_np[8, 600, 600:620], expect) expect = [ 8.0, 6.0, 7.0, 4.0, 3.0, 0.0, 4.0, 6.0, 6.0, 4.0, 3.0, 10.0, 5.0, 1.0, 3.0, 8.0, 8.0, 2.0, 1.0, 4.0, ] np.testing.assert_array_equal(y_np[12, 900, 900:920], expect) expect = [ 2.0, 1.0, 14.0, 3.0, 6.0, 5.0, 2.0, 2.0, 6.0, 5.0, 7.0, 4.0, 8.0, 4.0, 8.0, 4.0, 5.0, 7.0, 1.0, 7.0, ] np.testing.assert_array_equal(y_np[15, 1023, 1000:1020], expect) paddle.enable_static() if __name__ == "__main__": unittest.main()