# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle import paddle.fluid.core as core from paddle.fluid.framework import _test_eager_guard from paddle.fluid.dygraph.base import to_variable from test_imperative_base import new_program_scope import numpy as np class RecurrentTest(fluid.Layer): def __init__(self, name_scope): super().__init__(name_scope) def forward(self, in1, in2): out = fluid.layers.mul(in1, in2) sum_out = fluid.layers.reduce_sum(out) return sum_out, out class TestRecurrentFeed(unittest.TestCase): def test_recurrent_feed(self): seed = 90 original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32") original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32") with fluid.dygraph.guard(): fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed original_in1 = to_variable(original_np1) original_in2 = to_variable(original_np2) original_in1.stop_gradient = False original_in2.stop_gradient = False rt = RecurrentTest("RecurrentTest") for i in range(3): sum_out, out = rt(original_in1, original_in2) original_in1 = out sum_out_value = sum_out.numpy() sum_out.backward() dyout = out.gradient() original_in1.stop_gradient = True rt.clear_gradients() fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False}) with fluid.dygraph.guard(): fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) with _test_eager_guard(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed original_in1 = to_variable(original_np1) original_in2 = to_variable(original_np2) original_in1.stop_gradient = False original_in2.stop_gradient = False rt = RecurrentTest("RecurrentTest") for i in range(3): sum_out, out = rt(original_in1, original_in2) original_in1 = out eager_sum_out_value = sum_out.numpy() sum_out.backward() eager_dyout = out.gradient() original_in1.stop_gradient = True rt.clear_gradients() fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False}) with new_program_scope(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed in1 = fluid.layers.data( name="inp1", shape=[2, 2], append_batch_size=False ) in2 = fluid.layers.data( name="inp2", shape=[2, 2], append_batch_size=False ) rt1 = RecurrentTest("RecurrentTest") static_sum_out, static_out = rt1(in1, in2) fluid.backward.append_backward(static_sum_out) exe = fluid.Executor( fluid.CPUPlace() if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0) ) static_dout = ( fluid.default_main_program() .block(0) ._find_var_recursive(static_out.name + "@GRAD") ) fetch_list = [static_sum_out, static_out, static_dout] for i in range(3): out = exe.run( fluid.default_main_program(), feed={"inp1": original_np1, "inp2": original_np2}, fetch_list=fetch_list, ) static_out_value = out[1] static_sum_out = out[0] static_dout = out[2] original_np1 = static_out_value np.testing.assert_array_equal(static_sum_out, sum_out_value) np.testing.assert_array_equal(static_sum_out, eager_sum_out_value) np.testing.assert_array_equal(static_dout, dyout) np.testing.assert_array_equal(static_dout, eager_dyout) if __name__ == '__main__': paddle.enable_static() unittest.main()