Neural Networks¶
Base¶
Functions
-
void
hl_shrink_col2feature(const real *dataCol, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataIm, real alpha = 1.0f, real beta = 0.0f)¶ Shrink column to feature.
- Parameters
dataCol-expand data.
channels-number of channel.
height-image height.
width-image width.
blockH-filter height.
blockW-filter width.
strideH-stride height.
strideW-stride width.
paddingH-padding height.
paddingW-padding width.
outputH-output height.
outputW-output width.
dataIm-output image data.
alpha-beta-
-
void
hl_expand_feature2col(const real *dataIm, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataCol)¶ Expand feature to column.
- Parameters
dataIm-input image data.
channels-number of channel.
height-image height.
width-image width.
blockH-filter height.
blockW-filter width.
strideH-stride height.
strideW-stride width.
paddingH-padding height.
paddingW-padding width.
outputH-output height.
outputW-output width.
dataCol-expand data.
-
void
hl_maxpool_forward(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶ Maximum pool forward.
- Parameters
frameCnt-batch size of input image.
inputData-input data.
channels-number of channel.
height-image height.
width-image width.
pooledH-output image height.
pooledW-output image width.
sizeX-size of pooling window.
stride-pooling stride.
start-pooling start.
tgtData-output data.
-
void
hl_maxpool_backward(int frameCnt, const real *inputData, const real *outData, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *targetGrad, real scaleA, real scaleB)¶ Maximum pool backward.
- Parameters
frameCnt-batch size of input image.
inputData-input data.
outData-output data.
outGrad-output grad data.
channels-number of channel.
height-image height.
width-image width.
pooledH-output image height.
pooledW-output image width.
sizeX-size of pooling window.
stride-pooling stride.
start-pooling start.
targetGrad-output grad.
scaleA-scale.
scaleB-scale.
-
void
hl_avgpool_forward(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶ Averge pool forward.
- Parameters
frameCnt-batch size of input image.
inputData-input data.
channels-number of channel.
height-image height.
width-image width.
pooledH-output image height.
pooledW-output image width.
sizeX-size of pooling window.
stride-pooling stride.
start-pooling start.
tgtData-output data.
-
void
hl_avgpool_backward(int frameCnt, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *backGrad, real scaleA, real scaleB)¶ Maximum pool backward.
- Parameters
frameCnt-batch size of input image.
outGrad-input data.
channels-number of channel.
height-image height.
width-image width.
pooledH-output image height.
pooledW-output image width.
sizeX-size of pooling window.
stride-pooling stride.
start-pooling start.
backGrad-output grad.
scaleA-scale.
scaleB-scale.
-
void
hl_CMRNorm_forward(size_t frameCnt, const real *in, real *scale, real *out, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶ Cross-map-respose normalize forward.
- Parameters
frameCnt-batch size of input image.
in-input data.
scale-buffer.
out-output data.
channels-number of channel.
height-image height.
width-image width.
sizeX-size.
alpha-scale.
beta-scale.
-
void
hl_CMRNorm_backward(size_t frameCnt, const real *inV, const real *scale, const real *outV, const real *outDiff, real *inDiff, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶ Cross-map-respose normalize backward.
- Parameters
frameCnt-batch size of input image.
inV-input data.
scale-buffer.
outV-output value.
outDiff-output grad.
inDiff-input grad.
channels-number of channel.
height-image height.
width-image width.
sizeX-size.
alpha-scale.
beta-scale.
Defines
-
SIGMOID_THRESHOLD_MIN¶ sigmoid threshold maximum
-
SIGMOID_THRESHOLD_MAX¶ sigmoid threshold minimum
-
namespace
hppl¶
-
namespace
hppl¶ Functions
-
__m256
relu(const __m256 a)¶
-
__m256
sigmoid(const __m256 a)¶
-
__m256
tanh(const __m256 a)¶
-
__m256
linear(const __m256 a)¶
-
__m256
relu(const __m256 a, const __m256 b)¶
-
__m256
sigmoid(const __m256 a, const __m256 b)¶
-
__m256
tanh(const __m256 a, const __m256 b)¶
-
__m256
linear(const __m256 a, const __m256 b)¶
-
__m256
Defines
-
HL_DEVICE_FUNCTIONS_CUH_¶
-
namespace
paddle¶ Functions
- template <class T>
-
__device__ T paddle::paddleAtomicAdd(T * address, T val)
- template <>
-
__device__ float paddle::paddleAtomicAdd(float * address, float val)
- template <>
-
__device__ double paddle::paddleAtomicAdd(double * address, double val)
Defines
-
HL_GPU_FUNCTIONS_CUH_¶