// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/pten/backends/gpu/gpu_context.h" #include "paddle/pten/backends/gpu/gpu_info.h" #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/kernels/trunc_grad_kernel.h" namespace pten { using paddle::platform::PADDLE_CUDA_NUM_THREADS; template __global__ void TruncGrad(T* dx, int64_t N) { CUDA_KERNEL_LOOP(index, N) { dx[index] = static_cast(0.0); } } template void TruncGradKernel(const Context& dev_ctx, const DenseTensor& out_grad, DenseTensor* in_grad) { const auto* out_grad_data = out_grad.data(); T* in_grad_data = dev_ctx.template Alloc(in_grad); int64_t numel = out_grad.numel(); int theads = PADDLE_CUDA_NUM_THREADS; int blocks = (numel + theads - 1) / theads; TruncGrad<<>>(in_grad_data, numel); } } // namespace pten PT_REGISTER_KERNEL(trunc_grad, GPU, ALL_LAYOUT, pten::TruncGradKernel, float, double, int, int64_t) {}