// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/api/light_api.h" #include #include DEFINE_string(optimized_model, "", ""); namespace paddle { namespace lite { TEST(LightAPI, load) { LightPredictor predictor; predictor.Build(FLAGS_optimized_model); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({100, 100}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < 100 * 100; i++) { data[i] = i; } predictor.Run(); } } // namespace lite } // namespace paddle USE_LITE_OP(mul); USE_LITE_OP(fc); USE_LITE_OP(scale); USE_LITE_OP(feed); USE_LITE_OP(fetch); USE_LITE_OP(io_copy); USE_LITE_KERNEL(feed, kHost, kAny, kAny, def); USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def); #ifdef LITE_WITH_X86 USE_LITE_KERNEL(relu, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(mul, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(fc, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(scale, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(square, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(softmax, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(dropout, kX86, kFloat, kNCHW, def); #endif