# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestSumOp(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMeanOp(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'dim': [1]} self.outputs = { 'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMaxOp(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestMinOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestProdOp(OpTest): def setUp(self): self.op_type = "reduce_prod" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].prod(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random(20).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test2DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [0]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} class Test2DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce2(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [-2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce3(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1, 2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class TestKeepDimReduce(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim']) } class TestReduceAll(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'reduce_all': True} self.outputs = {'Out': self.inputs['X'].sum()} ## reduction in multi dims class TestReduceMeanOpMultiAxises(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'dim': [1, 2]} self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceMaxOpMultiAxises(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestReduceMinOpMultiAxises(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1, 2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestKeepDimReduceSumMultiAxises(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') if __name__ == '__main__': unittest.main()