# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MNIST dataset. This module will download dataset from http://yann.lecun.com/exdb/mnist/ and parse training set and test set into paddle reader creators. """ import paddle.dataset.common import subprocess import numpy import platform __all__ = ['train', 'test', 'convert'] URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/' TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz' TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3' TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz' TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c' TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz' TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873' TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz' TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432' def reader_creator(image_filename, label_filename, buffer_size): def reader(): if platform.system() == 'Darwin': zcat_cmd = 'gzcat' elif platform.system() == 'Linux': zcat_cmd = 'zcat' else: raise NotImplementedError() # According to http://stackoverflow.com/a/38061619/724872, we # cannot use standard package gzip here. m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE) m.stdout.read(16) # skip some magic bytes l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE) l.stdout.read(8) # skip some magic bytes try: # reader could be break. while True: labels = numpy.fromfile( l.stdout, 'ubyte', count=buffer_size).astype("int") if labels.size != buffer_size: break # numpy.fromfile returns empty slice after EOF. images = numpy.fromfile( m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape( (buffer_size, 28 * 28)).astype('float32') images = images / 255.0 * 2.0 - 1.0 for i in xrange(buffer_size): yield images[i, :], int(labels[i]) finally: try: m.terminate() except: pass try: l.terminate() except: pass return reader def train(): """ MNIST training set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :return: Training reader creator :rtype: callable """ return reader_creator( paddle.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5), paddle.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5), 100) def test(): """ MNIST test set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :return: Test reader creator. :rtype: callable """ return reader_creator( paddle.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5), paddle.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5), 100) def fetch(): paddle.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5) paddle.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5) paddle.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5) paddle.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5) def convert(path): """ Converts dataset to recordio format """ paddle.dataset.common.convert(path, train(), 1000, "minist_train") paddle.dataset.common.convert(path, test(), 1000, "minist_test")