# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import numpy as np import contextlib from paddle import fluid from paddle.incubate.hapi.model import Model, Input, set_device from paddle.incubate.hapi.loss import CrossEntropy from paddle.incubate.hapi.vision.models import LeNet from paddle.incubate.hapi.metrics import Accuracy from paddle.incubate.hapi.callbacks import ProgBarLogger from paddle.incubate.hapi.datasets import MNIST class MnistDataset(MNIST): def __init__(self, mode, return_label=True): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) def compute_accuracy(pred, gt): pred = np.argmax(pred, -1) gt = np.array(gt) correct = pred[:, np.newaxis] == gt return np.sum(correct) / correct.shape[0] @unittest.skipIf(not fluid.is_compiled_with_cuda(), 'CPU testing is not supported') class TestDistTraning(unittest.TestCase): def test_static_multiple_gpus(self): device = set_device('gpu') im_shape = (-1, 1, 28, 28) batch_size = 128 inputs = [Input(im_shape, 'float32', name='image')] labels = [Input([None, 1], 'int64', name='label')] train_dataset = MnistDataset(mode='train') val_dataset = MnistDataset(mode='test') test_dataset = MnistDataset(mode='test', return_label=False) model = LeNet() optim = fluid.optimizer.Momentum( learning_rate=0.001, momentum=.9, parameter_list=model.parameters()) loss = CrossEntropy() model.prepare(optim, loss, Accuracy(), inputs, labels, device=device) cbk = ProgBarLogger(50) model.fit(train_dataset, val_dataset, epochs=2, batch_size=batch_size, callbacks=cbk) eval_result = model.evaluate(val_dataset, batch_size=batch_size) output = model.predict( test_dataset, batch_size=batch_size, stack_outputs=True) np.testing.assert_equal(output[0].shape[0], len(test_dataset)) acc = compute_accuracy(output[0], val_dataset.labels) np.testing.assert_allclose(acc, eval_result['acc']) if __name__ == '__main__': unittest.main()