""" CIFAR Dataset. URL: https://www.cs.toronto.edu/~kriz/cifar.html the default train_creator, test_creator used for CIFAR-10 dataset. """ from config import DATA_HOME import os import hashlib import urllib2 import shutil import tarfile import cPickle import itertools import numpy __all__ = ['CIFAR10', 'CIFAR100', 'train_creator', 'test_creator'] def __download_file__(filename, url, md5): def __file_ok__(): if not os.path.exists(filename): return False md5_hash = hashlib.md5() with open(filename, 'rb') as f: for chunk in iter(lambda: f.read(4096), b""): md5_hash.update(chunk) return md5_hash.hexdigest() == md5 while not __file_ok__(): response = urllib2.urlopen(url) with open(filename, mode='wb') as of: shutil.copyfileobj(fsrc=response, fdst=of) def __read_one_batch__(batch): data = batch['data'] labels = batch.get('labels', batch.get('fine_labels', None)) assert labels is not None for sample, label in itertools.izip(data, labels): yield (sample / 255.0).astype(numpy.float32), int(label) CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a' CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85' class CIFAR(object): """ CIFAR dataset reader. The base class for CIFAR-10 and CIFAR-100 :param url: Download url. :param md5: File md5sum :param meta_filename: Meta file name in package. :param train_filename: Train file name in package. :param test_filename: Test file name in package. """ def __init__(self, url, md5, meta_filename, train_filename, test_filename): filename = os.path.split(url)[-1] assert DATA_HOME is not None filepath = os.path.join(DATA_HOME, md5) if not os.path.exists(filepath): os.makedirs(filepath) self.__full_file__ = os.path.join(filepath, filename) self.__meta_filename__ = meta_filename self.__train_filename__ = train_filename self.__test_filename__ = test_filename __download_file__(filename=self.__full_file__, url=url, md5=md5) def labels(self): """ labels get all dataset label in order. :return: a list of label. :rtype: list[string] """ with tarfile.open(self.__full_file__, mode='r') as f: name = [ each_item.name for each_item in f if self.__meta_filename__ in each_item.name ][0] meta_f = f.extractfile(name) meta = cPickle.load(meta_f) for key in meta: if 'label' in key: return meta[key] else: raise RuntimeError("Unexpected branch.") def train(self): """ Train Reader """ return self.__read_batch__(self.__train_filename__) def test(self): """ Test Reader """ return self.__read_batch__(self.__test_filename__) def __read_batch__(self, sub_name): with tarfile.open(self.__full_file__, mode='r') as f: names = (each_item.name for each_item in f if sub_name in each_item.name) for name in names: batch = cPickle.load(f.extractfile(name)) for item in __read_one_batch__(batch): yield item class CIFAR10(CIFAR): """ CIFAR-10 dataset, images are classified in 10 classes. """ def __init__(self): super(CIFAR10, self).__init__( CIFAR10_URL, CIFAR10_MD5, meta_filename='batches.meta', train_filename='data_batch', test_filename='test_batch') class CIFAR100(CIFAR): """ CIFAR-100 dataset, images are classified in 100 classes. """ def __init__(self): super(CIFAR100, self).__init__( CIFAR100_URL, CIFAR100_MD5, meta_filename='meta', train_filename='train', test_filename='test') def train_creator(): """ Default train reader creator. Use CIFAR-10 dataset. """ cifar = CIFAR10() return cifar.train def test_creator(): """ Default test reader creator. Use CIFAR-10 dataset. """ cifar = CIFAR10() return cifar.test def unittest(label_count=100): cifar = globals()["CIFAR%d" % label_count]() assert len(cifar.labels()) == label_count for _ in cifar.test(): pass for _ in cifar.train(): pass if __name__ == '__main__': unittest(10) unittest(100)