# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def dequantize_log(x, dict_data): output_data = np.zeros_like(x).astype('float32') x_f = x.flatten() output_data_f = output_data.flatten() for i in range(x_f.size): if x_f[i] < 0: output_data_f[i] = -dict_data[x_f[i] + 128] else: output_data_f[i] = dict_data[x_f[i]] return output_data_f.reshape(x.shape) class TestDequantizeLogOp(OpTest): def setUp(self): self.op_type = "dequantize_log" x = np.random.randint(low=-128, high=127, size=(20, 10)).astype('int8') dict_data = np.random.random(128).astype('float32') xdq = dequantize_log(x, dict_data) self.inputs = { 'X': np.array(x).astype('int8'), 'Dict': np.array(dict_data).astype('float32'), } self.outputs = {'Out': xdq} def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()