# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.layer_helper import LayerHelper def inplace_add(x, bias): helper = LayerHelper('scale', **locals()) helper.append_op( type='scale', inputs={'X': [x]}, outputs={'Out': [x]}, attrs={'bias': bias}, ) return x class TestAddReaderDependency(unittest.TestCase): def setUp(self): self.batch_num = 3 self.sleep_time = 2 self.use_double_buffer = True def test_main(self): self.run_main(fluid.CPUPlace()) if fluid.is_compiled_with_cuda(): self.run_main(fluid.CUDAPlace(0)) def run_main(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): with fluid.scope_guard(fluid.Scope()): tmp_in = fluid.data(name='tmp_in', dtype='float32', shape=[1]) loader = fluid.io.DataLoader.from_generator( feed_list=[tmp_in], capacity=16, iterable=False, use_double_buffer=self.use_double_buffer, ) def data_source(): for _ in range(self.batch_num): time.sleep(self.sleep_time) # sleep some times yield np.random.uniform( low=-1, high=1, size=[1] ).astype('float32'), persistable_in = fluid.data( name='persistable_in', dtype='float32', shape=[1] ) persistable_in.persistable = True persistable_in = inplace_add(persistable_in, bias=1) prog = fluid.CompiledProgram(fluid.default_main_program()) exe = fluid.Executor(place) loader.set_batch_generator(data_source) loader.start() batch_id = 0 try: while True: if batch_id == 0: feed = { persistable_in.name: np.array([-1]).astype( 'float32' ) } else: feed = None (ret,) = exe.run( prog, feed=feed, fetch_list=[persistable_in] ) self.assertEqual(ret.shape, (1,)) self.assertEqual(ret[0], batch_id) batch_id += 1 except fluid.core.EOFException: loader.reset() self.assertEqual(batch_id, self.batch_num) t = ( fluid.global_scope() .find_var(persistable_in.name) .get_tensor() ) t_val = np.array(t) self.assertEqual(t_val.shape, (1,)) self.assertEqual(t_val[0] + 1, batch_id) class TestAddReaderDependencyWithoutDoubleBuffer(TestAddReaderDependency): def setUp(self): self.batch_num = 3 self.sleep_time = 2 self.use_double_buffer = False if __name__ == '__main__': unittest.main()