# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import paddle.vision.transforms as T from paddle.static import InputSpec from paddle.vision.datasets import MNIST import paddle from paddle.fluid.framework import _test_eager_guard class MnistDataset(MNIST): def __len__(self): return 512 class TestWandbCallbacks(unittest.TestCase): def setUp(self): self.save_dir = tempfile.mkdtemp() def func_wandb_callback(self): inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = MnistDataset(mode='train', transform=transform) eval_dataset = MnistDataset(mode='test', transform=transform) net = paddle.vision.models.LeNet() model = paddle.Model(net, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=net.parameters()) model.prepare( optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy(), ) callback = paddle.callbacks.WandbCallback( project='random', dir=self.save_dir, anonymous='must', mode='offline', ) model.fit( train_dataset, eval_dataset, batch_size=64, callbacks=callback ) def test_wandb_callback(self): with _test_eager_guard(): self.func_wandb_callback() self.func_wandb_callback() if __name__ == '__main__': unittest.main()