# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle @paddle.jit.to_static def tensor_clone(x): x = paddle.to_tensor(x) y = x.clone() return y class TestTensorClone(unittest.TestCase): def _run(self, to_static): paddle.jit.enable_to_static(to_static) x = paddle.ones([1, 2, 3]) return tensor_clone(x).numpy() def test_tensor_clone(self): dygraph_res = self._run(to_static=False) static_res = self._run(to_static=True) np.testing.assert_allclose(dygraph_res, static_res, rtol=1e-05) @paddle.jit.to_static def tensor_numpy(x): x = paddle.to_tensor(x) x.clear_gradient() return x class TestTensorDygraphOnlyMethodError(unittest.TestCase): def _run(self, to_static): paddle.jit.enable_to_static(to_static) x = paddle.zeros([2, 2]) y = tensor_numpy(x) return y.numpy() def test_to_static_numpy_report_error(self): dygraph_res = self._run(to_static=False) with self.assertRaises(AssertionError): static_res = self._run(to_static=True) @paddle.jit.to_static def tensor_item(x): x = paddle.to_tensor(x) y = x.clone() return y.item() class TestTensorItem(unittest.TestCase): def _run(self, to_static): paddle.jit.enable_to_static(to_static) x = paddle.ones([1]) if to_static: return tensor_item(x).numpy() return tensor_item(x) def test_tensor_clone(self): dygraph_res = self._run(to_static=False) static_res = self._run(to_static=True) np.testing.assert_allclose(dygraph_res, static_res) @paddle.jit.to_static def tensor_size(x): x = paddle.to_tensor(x) x = paddle.reshape(x, paddle.shape(x)) # dynamic shape y = x.size return y class TestTensorSize(unittest.TestCase): def _run(self, to_static): paddle.jit.enable_to_static(to_static) x = paddle.ones([1, 2, 3]) if not to_static: return tensor_size(x) return tensor_size(x).numpy() def test_tensor_clone(self): dygraph_res = self._run(to_static=False) static_res = self._run(to_static=True) np.testing.assert_allclose(dygraph_res, static_res, rtol=1e-5) if __name__ == '__main__': unittest.main()