# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time import unittest import numpy as np import paddle from paddle import fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.optimizer import SGDOptimizer from paddle.jit.api import to_static PRINT_STEP = 20 SEED = 2020 class SimpleLSTMRNN(paddle.nn.Layer): def __init__( self, hidden_size, num_steps, num_layers=2, init_scale=0.1, dropout=None ): super().__init__() self._hidden_size = hidden_size self._num_layers = num_layers self._init_scale = init_scale self._dropout = dropout self._num_steps = num_steps self.cell_array = [] self.hidden_array = [] self.weight_1_arr = [] self.weight_2_arr = [] self.bias_arr = [] self.mask_array = [] for i in range(self._num_layers): weight_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=paddle.nn.initializer.Uniform( low=-self._init_scale, high=self._init_scale ) ), shape=[self._hidden_size * 2, self._hidden_size * 4], dtype="float32", default_initializer=paddle.nn.initializer.Uniform( low=-self._init_scale, high=self._init_scale ), ) self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1)) bias_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=paddle.nn.initializer.Uniform( low=-self._init_scale, high=self._init_scale ) ), shape=[self._hidden_size * 4], dtype="float32", default_initializer=paddle.nn.initializer.Constant(0.0), ) self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1)) def forward(self, input_embedding, init_hidden=None, init_cell=None): cell_array = [] hidden_array = [] for i in range(self._num_layers): hidden_array.append(init_hidden[i]) cell_array.append(init_cell[i]) res = [] for index in range(self._num_steps): step_input = input_embedding[:, index, :] for k in range(self._num_layers): pre_hidden = hidden_array[k] pre_cell = cell_array[k] weight_1 = self.weight_1_arr[k] bias = self.bias_arr[k] nn = paddle.concat([step_input, pre_hidden], 1) gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) i, j, f, o = paddle.split( gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f ) + paddle.nn.functional.sigmoid(i) * paddle.tanh(j) m = paddle.tanh(c) * paddle.nn.functional.sigmoid(o) hidden_array[k] = m cell_array[k] = c step_input = m if self._dropout is not None and self._dropout > 0.0: step_input = paddle.nn.functional.dropout( step_input, p=self._dropout, mode='upscale_in_train', ) res.append(step_input) real_res = paddle.concat(res, 1) real_res = paddle.reshape( real_res, [-1, self._num_steps, self._hidden_size] ) last_hidden = paddle.concat(hidden_array, 1) last_hidden = paddle.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size] ) last_hidden = paddle.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = paddle.concat(cell_array, 1) last_cell = paddle.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size] ) last_cell = paddle.transpose(x=last_cell, perm=[1, 0, 2]) return real_res, last_hidden, last_cell class PtbModel(paddle.nn.Layer): def __init__( self, hidden_size, vocab_size, num_layers=2, num_steps=20, init_scale=0.1, dropout=None, ): super().__init__() self.hidden_size = hidden_size self.vocab_size = vocab_size self.init_scale = init_scale self.num_layers = num_layers self.num_steps = num_steps self.dropout = dropout self.simple_lstm_rnn = SimpleLSTMRNN( hidden_size, num_steps, num_layers=num_layers, init_scale=init_scale, dropout=dropout, ) self.embedding = paddle.nn.Embedding( vocab_size, hidden_size, sparse=False, weight_attr=fluid.ParamAttr( name='embedding_para', initializer=paddle.nn.initializer.Uniform( low=-init_scale, high=init_scale ), ), ) self.softmax_weight = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.hidden_size, self.vocab_size], dtype="float32", default_initializer=paddle.nn.initializer.Uniform( low=-self.init_scale, high=self.init_scale ), ) self.softmax_bias = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.vocab_size], dtype="float32", default_initializer=paddle.nn.initializer.Uniform( low=-self.init_scale, high=self.init_scale ), ) def build_once(self, input, label, init_hidden, init_cell): pass @to_static def forward(self, input, label, init_hidden, init_cell): init_h = paddle.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size] ) init_c = paddle.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size] ) x_emb = self.embedding(input) x_emb = paddle.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size] ) if self.dropout is not None and self.dropout > 0.0: x_emb = paddle.nn.functional.dropout( x_emb, p=self.dropout, mode='upscale_in_train', ) rnn_out, last_hidden, last_cell = self.simple_lstm_rnn( x_emb, init_h, init_c ) projection = paddle.matmul(rnn_out, self.softmax_weight) projection = paddle.add(projection, self.softmax_bias) loss = paddle.nn.functional.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False ) loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.mean(loss, axis=[0]) loss = paddle.sum(loss) return loss, last_hidden, last_cell def debug_emb(self): np.save("emb_grad", self.x_emb.gradient()) def train(place): num_layers = 1 batch_size = 4 hidden_size = 10 num_steps = 3 init_scale = 0.1 max_epoch = 1 dropout = 0.0 vocab_size = 1000 batch_num = 200 with fluid.dygraph.guard(place): paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) ptb_model = PtbModel( hidden_size=hidden_size, vocab_size=vocab_size, num_layers=num_layers, num_steps=num_steps, init_scale=init_scale, dropout=dropout, ) sgd = SGDOptimizer( learning_rate=1e-3, parameter_list=ptb_model.parameters() ) for epoch_id in range(max_epoch): total_loss = 0.0 iters = 0.0 total_sample = 0 init_hidden_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32' ) init_cell_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32' ) init_hidden = to_variable(init_hidden_data) init_cell = to_variable(init_cell_data) for step_id in range(batch_num): x_data = np.arange(12).reshape(4, 3).astype('int64') y_data = np.arange(1, 13).reshape(4, 3).astype('int64') y_data = y_data.reshape((-1, 1)) x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, num_steps, 1)) x = to_variable(x_data) y = to_variable(y_data) dy_loss, last_hidden, last_cell = ptb_model( x, y, init_hidden, init_cell ) out_loss = dy_loss.numpy() dy_loss.backward() sgd.minimize(dy_loss) ptb_model.clear_gradients() total_loss += out_loss iters += num_steps total_sample += 1 if step_id % PRINT_STEP == 0: if step_id == 0: logging.info( "epoch %d | step %d, loss %0.3f" % (epoch_id, step_id, total_loss / total_sample) ) avg_batch_time = time.time() else: speed = PRINT_STEP / (time.time() - avg_batch_time) logging.info( "epoch %d | step %d, loss %0.3f, speed %.3f steps/s" % ( epoch_id, step_id, total_loss / total_sample, speed, ) ) avg_batch_time = time.time() return out_loss, last_hidden.numpy(), last_cell.numpy() def train_dygraph(place): paddle.jit.enable_to_static(False) return train(place) def train_static(place): paddle.jit.enable_to_static(True) return train(place) class TestPtb(unittest.TestCase): def setUp(self): self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) def test_check_result(self): loss_1, hidden_1, cell_1 = train_static(self.place) loss_2, hidden_2, cell_2 = train_dygraph(self.place) np.testing.assert_allclose(loss_1, loss_2, rtol=1e-05) np.testing.assert_allclose(hidden_1, hidden_2, rtol=1e-05) np.testing.assert_allclose(cell_1, cell_2, rtol=1e-05) if __name__ == '__main__': unittest.main()