# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self.linear = paddle.nn.Linear(1, 1) @paddle.jit.to_static( input_spec=[ paddle.static.InputSpec(shape=[None, None], dtype=paddle.float32) ] ) def forward(self, x): return self.linear(x) class TestBackward(unittest.TestCase): def test_order_0(self): """ loss = 1 * w * 1 + 2 * w * 2 delta_w = 5 """ model = MyLayer() model.clear_gradients() inp = paddle.ones([1, 1]) out1 = model(inp * 1) out2 = model(inp * 2) loss = out2 * 2 + out1 * 1 loss.backward() self.assertEqual(model.linear.weight.grad, 5) def test_order_1(self): """ loss = 2 * w * 2 + 1 * w * 1 delta_w = 5 """ model = MyLayer() model.clear_gradients() inp = paddle.ones([1, 1]) out1 = model(inp * 1) out2 = model(inp * 2) loss = out1 * 1 + out2 * 2 loss.backward() self.assertEqual(model.linear.weight.grad, 5) if __name__ == '__main__': unittest.main()