# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle SEED = 2020 np.random.seed(SEED) class SimpleNet(paddle.nn.Layer): def __init__(self): super().__init__() self.linear1 = paddle.nn.Linear(10, 3) self.linear2 = paddle.nn.Linear(3, 1) def forward(self, x): out1 = self.linear1(x) out2 = self.linear2(out1) return [out1, out2] # 梯度为0 # return [out1] # 梯度正常 # return [out2, out1] # 梯度正常 class TestGradientAggregationInDy2Static(unittest.TestCase): def test_to_static(self): def simplenet_grad(inp, to_static=False): net = SimpleNet() if to_static: net = paddle.jit.to_static(net) loss = net(inp) loss[0].backward() return net.linear1.weight.grad inp = paddle.to_tensor( np.random.randn( 10, ) ).astype("float32") np.testing.assert_allclose( simplenet_grad(inp, True).numpy(), simplenet_grad(inp, False).numpy(), rtol=1e-05, ) if __name__ == '__main__': unittest.main()