# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle np.random.seed(1) if paddle.fluid.is_compiled_with_cuda(): place = paddle.fluid.CUDAPlace(0) else: place = paddle.fluid.CPUPlace() class SimpleNet(paddle.nn.Layer): def __init__(self): super().__init__() self._linear = paddle.nn.Linear(1, 1) def forward(self, x): """forward with duplicate outputs.""" x = self._linear(x) return x, x class TestDuplicateOutput(unittest.TestCase): """ TestCase for the transformation from control flow `if/else` dependent on tensor in Dygraph into Static `fluid.layers.cond`. """ def setUp(self): self.net = paddle.jit.to_static(SimpleNet()) self.x = paddle.to_tensor([1.0]) def _run_static(self): loss0, loss1 = self.net(self.x) loss0.backward() param = self.net.parameters() self.assertEqual(param[0].grad.numpy(), 1.0) def test_ast_to_func(self): self._run_static() if __name__ == '__main__': unittest.main()