# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle def drop_path(x, training=False): if not training: return x else: return 2 * x class DropPath(paddle.nn.Layer): def __init__(self): super().__init__() @paddle.jit.to_static def forward(self, x): return drop_path(x, self.training) class TestTrainEval(unittest.TestCase): def setUp(self): self.model = DropPath() def tearDown(self): pass def test_train_and_eval(self): x = paddle.to_tensor([1, 2, 3]).astype("int64") eval_out = x.numpy() train_out = x.numpy() * 2 self.model.train() np.testing.assert_allclose(self.model(x).numpy(), train_out, rtol=1e-05) self.model.eval() np.testing.assert_allclose(self.model(x).numpy(), eval_out, rtol=1e-05) if __name__ == "__main__": unittest.main()