Base¶
Layer¶
-
class
paddle::
Layer
¶ Base class for layer. Define necessary variables and functions for every layer.
Subclassed by paddle::AddtoLayer, paddle::AgentLayer, paddle::AverageLayer, paddle::BatchNormBaseLayer, paddle::BlockExpandLayer, paddle::BootBiasLayer, paddle::ConcatenateLayer, paddle::ConcatenateLayer2, paddle::ConvBaseLayer, paddle::ConvexCombinationLayer, paddle::ConvShiftLayer, paddle::CosSimLayer, paddle::CosSimVecMatLayer, paddle::CostLayer, paddle::CRFLayer, paddle::CTCLayer, paddle::DataLayer, paddle::DataNormLayer, paddle::EosIdCheckLayer, paddle::ExpandLayer, paddle::FeatureMapExpandLayer, paddle::FullyConnectedLayer, paddle::GatedRecurrentLayer, paddle::GatherAgentLayer, paddle::GetOutputLayer, paddle::GruStepLayer, paddle::HierarchicalSigmoidLayer, paddle::InterpolationLayer, paddle::LambdaCost, paddle::LstmLayer, paddle::LstmStepLayer, paddle::MaxIdLayer, paddle::MaxLayer, paddle::MixedLayer, paddle::MultiplexLayer, paddle::NCELayer, paddle::NormLayer, paddle::OuterProdLayer, paddle::ParameterReluLayer, paddle::PoolLayer, paddle::PowerLayer, paddle::RankingCost, paddle::RecurrentLayer, paddle::RecurrentLayerGroup, paddle::ResizeLayer, paddle::SamplingIdLayer, paddle::ScalingLayer, paddle::ScatterAgentLayer, paddle::SelectiveFullyConnectedLayer, paddle::SequenceConcatLayer, paddle::SequenceLastInstanceLayer, paddle::SequenceReshapeLayer, paddle::SlopeInterceptLayer, paddle::SubSequenceLayer, paddle::SumToOneNormLayer, paddle::TensorLayer, paddle::TransLayer, paddle::ValidationLayer
Public Functions
-
virtual void
waitInputValue
()¶ Wait until all input value ready. Called before Layer::forward() function.
-
virtual void
copyOutputToOtherDevice
()¶ Copy layer’s output_ to other device. If output layer is in other device, called after Layer::forward() function.
-
virtual void
waitAndMergeOutputGrad
()¶ Wait until all output grad ready and merge them to output_.grad. Called before Layer::backward() function.
-
virtual void
markAllInputGrad
()¶ Notify previous layer the output grad ready. Called after Layer::backward() function.
-
Layer
(const LayerConfig &config, bool useGpu = FLAGS_use_gpu)¶
-
virtual
~Layer
()¶
-
bool
needGradient
() const¶ Get the flag whether layer need to compute gradient.
-
void
setNeedGradient
(bool need)¶ Set the flag whether layer need to compute gradient.
-
void
setNeedSequenceInfo
(bool need)¶ Set the flag whether layer need to re-compute sequence information, which includes sequenceStartPositions or subSequenceStartPositions.
-
const std::string &
getName
() const¶ Get layer’s name.
-
const std::string &
getType
() const¶ Get layer’s type.
-
size_t
getSize
() const¶ Get layer’s size.
-
int
getDeviceId
() const¶ Get layer’s deviceId.
-
void
addPrev
(LayerPtr l)¶ Add the inputLayer.
-
const LayerPtr &
getPrev
(size_t i)¶ Get the size of inputLayer[i].
-
const IVectorPtr &
getOutputLabel
()¶ Get the forward-output label.
-
void
setOutput
(const std::string &name, Argument *output)¶ If layer has multi-output, set output into outputMap_.
-
const std::vector<ParameterPtr> &
getParameters
()¶ Get layer’s parameters.
-
const ParameterPtr &
getBiasParameter
()¶ Get layer’s bias-parameters.
-
void
resizeOutput
(size_t height, size_t width)¶ Resize the output matrix size.
-
void
reserveOutput
(size_t height, size_t width)¶ Resize the output matrix size, and reset value to zero.
-
void
resetOutput
(size_t height, size_t width)¶ Resize the output matrix size, and reset value and grad to zero.
-
void
zeroGrad
()¶ Clear the gradient of output.
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
initSubNetwork
(NeuralNetwork *rootNetwork, const ModelConfig &config, const std::vector<ParameterType> ¶meterTypes, bool useGpu)¶ Intialization for sub network if there has sub network.
- Parameters
rootNetwork
-root network
config
-model config
parameterTypes
-parameter’s type
useGpu
-whether to use gpu or not
-
virtual void
accessSubNetwork
(const std::function<void(NeuralNetwork&)> &callback)¶ Access SubNetwork Object. If subnetwork exists, then invoke callback with subnetwrk.
- Parameters
callback
-if sub-network is exist, the callback is invoked.
-
virtual void
prefetch
()¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
resetState
()¶ Reset the internal state variables. Allocate them if they have not been allocated. This function need to called before Layer::forward() for generating sequence.
This is used for sequence generation. When generating sequence, the calculation at current timestamp depends on the state from previous timestamp. The model needs to keep the information about the previous timestamp in the state variables. Layers such as RecurrentLayer, LstmLayer and ContextLayer have state variables.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state.
- Return
- A copy of internal state.
-
void
showOutputStats
()¶ Show output state.
-
virtual void
backward
(const UpdateCallback &callback = nullptr) = 0¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
onPassEnd
()¶ One pass is finished.
Public Static Functions
-
LayerPtr
create
(const LayerConfig &config)¶ Create pointer of layer.
Protected Functions
-
void
markInputGrad
(int inputIndex)¶ Notify specified layer the output grad ready. Called in the backward function. If do mark input grad in the backward function, you should to ensure that all input grad will be marked in the backward function.
-
const IVectorPtr &
getInputLabel
(const Layer &inputLayer)¶ Get the forward-input label.
-
void
resetSpecifyOutput
(Argument &output, size_t height, size_t width, bool isValueClean, bool isGradClean)¶ Change the size of output (value, grad). Reset to value zero if isValueClean = true, Reset to grad zero if isGradClean = true.
-
void
addOutputArgument
(int deviceId)¶ Add output argument to other devices.
-
void
forwardActivation
()¶ Forward of activation function.
-
void
backwardActivation
()¶ Backward of activation function.
-
void
forwardDropOut
()¶ Forward of dropOut.
-
void
initNeedFlags
()¶ Initilize the needGradient_ flag.
Protected Attributes
-
bool
useGpu_
¶ whether to use GPU
-
int
deviceId_
¶ Device Id. CPU is -1, and GPU is 0, 1, 2 ...
-
std::vector<LayerPtr>
inputLayers_
¶ Input layers.
-
std::vector<ParameterPtr>
parameters_
¶ Parameter for each input layer. Parameters_[i] is nullptr if inputLayers_[i] does not need parameter.
-
ParameterPtr
biasParameter_
¶ nullptr if bias is not needed.
-
std::vector<Argument>
outputOtherDevice_
¶ Several outputs stored on different devices, used in ‘parallel_nn’ case, and record them by deviceId_.
-
std::unique_ptr<ActivationFunction>
activation_
¶
-
PassType
passType_
¶ Current passType, PASS_TRAIN or PASS_TEST.
-
bool
needGradient_
¶ Whether the layer need to compute gradient.
-
bool
needSequenceInfo_
¶ Whether the layer need to compute re-sequence information.
-
std::vector<bool>
markInBackward_
¶ Mark input grad in(true) or out(false) of backward function.
-
virtual void
Projection¶
-
class
paddle::
Projection
¶ A projection takes one Argument as input, calculate the result and add it to output Argument.
Subclassed by paddle::ContextProjection, paddle::DotMulProjection, paddle::FullMatrixProjection, paddle::IdentityOffsetProjection, paddle::IdentityProjection, paddle::TableProjection, paddle::TransposedFullMatrixProjection
Public Functions
-
Projection
(const ProjectionConfig &config, ParameterPtr parameter, bool useGpu)¶
-
virtual
~Projection
()¶
-
const std::string &
getName
() const¶
-
void
forward
(const Argument *in, const Argument *out, PassType passType)¶ Forward propagation. If backward() will be called, in and out must be kept valid until then.
- Parameters
in
-input of projection
out
-output of projection
passType
-PASS_TRAIN of PASS_TEST
-
virtual void
forward
() = 0¶
-
virtual void
backward
(const UpdateCallback &callback) = 0¶
-
virtual void
resetState
()¶ See comment in Layer.h for the function with the same name.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state. A copy of internal state is returned.
-
size_t
getOutputSize
() const¶ Get output size of projection.
Public Static Functions
-
Projection *
create
(const ProjectionConfig &config, ParameterPtr parameter, bool useGpu)¶
Public Static Attributes
-
ClassRegistrar<Projection, ProjectionConfig, ParameterPtr, bool>
registrar_
¶ Register a projection.
-
Operator¶
-
class
paddle::
Operator
¶ Operator like Projection, but takes more than one Arguments as input.
- Note
- : Operator can’t have parameters.
Subclassed by paddle::ConvOperator, paddle::DotMulOperator
Public Functions
-
Operator
(const OperatorConfig &config, bool useGpu)¶
-
virtual
~Operator
()¶
-
const OperatorConfig &
getConfig
() const¶
-
void
forward
(std::vector<const Argument *> ins, Argument *out, PassType passType)¶ Forward propagation. If backward() will be called, in and out must be kept valid until then.
- Parameters
ins
-inputs of operator
out
-output of operator
passType
-PASS_TRAIN of PASS_TEST
-
virtual void
forward
() = 0¶
-
virtual void
backward
() = 0¶
-
virtual void
resetState
()¶ See comment in Layer.h for the function with the same name.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Set layer state.
Data Layer¶
-
class
paddle::
DataLayer
¶ This layer just copy data to output, and has no backward propagation.
The config file api is data_layer.
Inherits from paddle::Layer
Public Functions
-
DataLayer
(const LayerConfig &config)¶
-
virtual void
prefetch
()¶ Prefetch sparse matrix/ids only.
-
virtual void
forward
(PassType passType)¶ Forward propagation. Copy data_ (value, in, grad, ids, cpuSequenceDims, sequenceStartPositions, subSequenceStartPositions, strs) to output_.
-
virtual void
backward
(const UpdateCallback &callback)¶ Data layer’s backward propagation do nothing.
-
virtual void
copyOutputToOtherDevice
()¶ Copy layer’s output_ to other device. If output layer is in other device, called after Layer::forward() function.
-
Fully Connected Layers¶
FullyConnectedLayer¶
-
class
paddle::
FullyConnectedLayer
¶ A layer has full connections to all neurons in the previous layer. It computes an inner product with a set of learned weights, and (optionally) adds biases.
The config file api is fc_layer.
Inherits from paddle::Layer
Public Functions
-
FullyConnectedLayer
(const LayerConfig &config)¶
-
~FullyConnectedLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
prefetch
()¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SelectiveFullyConnectedLayer¶
-
class
paddle::
SelectiveFullyConnectedLayer
¶ The SelectiveFullyConnectedLayer class.
SelectiveFullyConnectedLayer differs from FullyConnectedLayer by that it requires an additional input to indicate several selected columns, and only compute the multiplications between the input matrices and the selected columns of the parameter matrices of this layer. If the selected columns is not specified, SelectiveFullyConnected layer acts exactly like FullyConnectedLayer.
The config file api is selective_fc_layer.
Inherits from paddle::Layer
Public Functions
-
SelectiveFullyConnectedLayer
(const LayerConfig &config)¶
-
~SelectiveFullyConnectedLayer
()¶
-
virtual void
prefetch
()¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
reserveOutput
(size_t height, size_t width, size_t nnz)¶ Resize the output matrix size. And reset value to zero.
Fill candidates to select several activations as output.
- Note
- CURRENTLY, THIS METHOD IS ONLY USED FOR BEAM SEARCH
- Parameters
candidates
-specifies several selected columns of the parameter matrices of this layer. Multiplications only between the input matrices and the selected columns are computed. If the candidates is a nullptr, selective fc layer acts exactly like the fully connected layer.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Conv Layers¶
ConvBaseLayer¶
-
class
paddle::
ConvBaseLayer
¶ A Base Convolution Layer, which convolves the input image with learned filters and (optionally) adds biases.
Inherits from paddle::Layer
Subclassed by paddle::CudnnConvLayer, paddle::ExpandConvLayer
Public Functions
-
ConvBaseLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
int
outputSize
(int imageSize, int filterSize, int padding, int stride)¶ Calculate output size based on caffeMode_.
- input(+padding): 0123456789
- imageSize(+padding) = 10;
- filterSize = 3;
- stride = 2;
- caffeMode_ is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
- caffeMode_ is false:
- output: (012), (234), (456), (678), (9)
- outputSize = 5;
Protected Types
-
typedef std::vector<int>
IntV
¶
Protected Attributes
-
int
numFilters_
¶ The number of filters.
-
IntV
groups_
¶ Group size, refer to grouped convolution in Alex Krizhevsky’s paper: when group=2, the first half of the filters are only connected to the first half of the input channels, and the second half only connected to the second half.
Whether the bias is shared for feature in each channel.
-
WeightList
weights_
¶ shape of weight: (numChannels * filterPixels_, numFilters)
-
std::unique_ptr<Weight>
biases_
¶ If shared_biases is false shape of bias: (numFilters_, 1) If shared_biases is ture shape of bias: (numFilters_ * outputX * outputY, 1)
-
bool
caffeMode_
¶ True by default. The only difference is the calculation of output size.
-
ConvOperator¶
-
class
paddle::
ConvOperator
¶ ConvOperator takes two inputs to perform the convolution. The first input is the image, and the second input is the convolution kernel. The height of data for two inputs are the same. Each data of the first input is convolved with each data of the second input indepedently.
The config file api is conv_operator.
Inherits from paddle::Operator
ConvShiftLayer¶
-
class
paddle::
ConvShiftLayer
¶ A layer for circular convluation of two vectors, which is used in NEURAL TURING MACHINE.
Input: two vectors, the first is data (batchSize x dataDim) the second is shift weights (batchSize x shiftDim)
Output: a vector (batchSize x dataDim) Assumed that:
a[in]: contains M elements.
b[in]: contains N elements (N should be odd).
c[out]: contains M elements.
\[ c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j} \]
In this formula:
- a’s index is computed modulo M.
- b’s index is comupted modulo N.
The config file api is conv_shift_layer.
Inherits from paddle::Layer
Public Functions
-
ConvShiftLayer
(const LayerConfig &config)¶
-
~ConvShiftLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
CudnnConvLayer¶
-
class
paddle::
CudnnConvLayer
¶ A subclass of ConvBaseLayer by cuDNN implementation. It only supports GPU mode. We automatic select CudnnConvLayer for GPU mode and ExpandConvLayer for CPU mode if you set type of “conv”. User also can specfiy type of “exconv” or “cudnn_conv” for particular type.
The config file api is img_conv_layer.
Inherits from paddle::ConvBaseLayer
Public Functions
-
CudnnConvLayer
(const LayerConfig &config)¶
-
~CudnnConvLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. Initialize member variables and create tenor descriptor.
-
void
reshape
(int batchSize)¶ Reshape is done each forward. Reshape tensor decriptor inputDesc_, outputDesc_, convDesc_. And search the faster algo or the fastest algo within a given memeory limit.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
void
addBiases
()¶
-
void
bpropBiases
()¶
Protected Attributes
-
int
imageH_
¶
-
int
imageW_
¶
-
int
outputH_
¶
-
int
outputW_
¶
-
hl_tensor_descriptor
biasDesc_
¶ Cudnn tensor descriptor for bias.
-
std::vector<hl_tensor_descriptor>
inputDesc_
¶ Cudnn tensor descriptor for input.
-
std::vector<hl_tensor_descriptor>
outputDesc_
¶ Cudnn tensor descriptor for output.
-
std::vector<hl_filter_descriptor>
filterDesc_
¶ Cudnn tensor descriptor for filter.
-
std::vector<hl_convolution_descriptor>
convDesc_
¶ Cudnn tensor descriptor for a convolution operation.
-
IntV
inputOffset_
¶ One sample offset of input data.
-
IntV
outputOffset_
¶ One sample offset of output data.
-
IntV
weightOffset_
¶ One group offset of weight.
-
int
biasOffset_
¶ One group offset of bias.
-
std::vector<int>
fwdAlgo_
¶ Save the algorithm for forward convolution, which is obtained by cudnn api to search the best suited algorithm.
-
std::vector<int>
bwdFilterAlgo_
¶ Save the algorithm for computing convolution gradient with respect to filter coefficients.
-
std::vector<int>
bwdDataAlgo_
¶ Save the algorithm for computing convolution gradient with respect to the output.
-
std::vector<size_t>
fwdLimitBytes_
¶ Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified algo.
-
std::vector<size_t>
bwdFilterLimitBytes_
¶ Amount of GPU memory needed as workspace to be able to execute a backwardFilter with the specified algo.
-
std::vector<size_t>
bwdDataLimitBytes_
¶ Amount of GPU memory needed as workspace to be able to execute a backwardData with the specified algo.
-
std::vector<void *>
workSpace_
¶ Device work space address for each group.
-
int
maxGroups_
¶ Max number of groups.
-
void *
workSpaceData_
¶ Total work space address in device for all groups.
-
size_t
workSpaceInBytes_
¶ Size of total work space.
-
bool
isSelectAlgo_
¶ Is or not select conv algorihtm.
-
ExpandConvLayer¶
-
class
paddle::
ExpandConvLayer
¶ A subclass of convolution layer. This layer expands input and use matrix multiplication to calculate convolution operation.
The config file api is img_conv_layer.
Inherits from paddle::ConvBaseLayer
Public Functions
-
ExpandConvLayer
(const LayerConfig &config)¶
-
~ExpandConvLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
size_t
getSize
()¶
-
void
resetExpandInput
(size_t height, size_t width)¶ Create or resize expandInput_.
-
void
resetConvOutput
(size_t batchSize, int inIdx)¶ Create or resize transOutValue_.
-
void
expandFwdOnce
(MatrixPtr image, int inIdx, int startIdx)¶ Expand one input sample and perform matrix multiplication.
Add shared bias.
Add unshared bias.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
IntV
subM_
¶ For expand convolution. subM_ = numFilters_ / groups_.
-
IntV
subN_
¶ subN_ = outputH_ * outputW_.
-
IntV
subK_
¶ subK_ = channels_ * filterPixels_ * groups_.
-
IntV
imgSizeH_
¶ The spatial dimensions of height of input feature map.
-
IntV
imgSizeW_
¶ The spatial dimensions of width of input feature map.
-
IntV
outputH_
¶ The spatial dimensions of height of output feature map.
-
IntV
outputW_
¶ The spatial dimensions of width of output feature map.
-
ContextProjection¶
-
class
paddle::
ContextProjection
¶ Context projection concatenate features in adjacent time steps in a sequence. The i-th row of the output is the concatenation of context_length rows of the input. The context_length rows are the consecutive rows from the i+shift_start row.
For example, assumed input (x) has 4 words and the dimension of each word representation is 2. If we use zero to pad instead of learned weight to pad, and the context_lenth is 3, the output (y) is:
x = [a1, a2; b1, b2; c1, c2; d1, d2] y = [0, 0, a1, a2, b1, b2; a1, a2, b1, b2, c1, c2; b1, b2, c1, c2, d1, d2; c1, c2, d1, d2, 0, 0]
The config file api is context_projection.
Inherits from paddle::Projection
Public Functions
-
ContextProjection
(const ProjectionConfig &config, ParameterPtr parameter, bool useGpu)¶ Constructor. If context_start is zero and context_lenth is one, it will set trainable_padding false. trainable_padding is an optional arguments and if it is set, constructor will set learned weight, which is used to pad output.
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
virtual void
resetState
()¶ See comment in Layer.h for the function with the same name.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state. A copy of internal state is returned.
-
Pooling Layers¶
PoolLayer¶
-
class
paddle::
PoolLayer
¶ basic parent layer of pooling Pools the input within regions
Inherits from paddle::Layer
Subclassed by paddle::CudnnPoolLayer, paddle::PoolProjectionLayer
Public Functions
-
PoolLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
PoolProjectionLayer¶
-
class
paddle::
PoolProjectionLayer
¶ Inherits from paddle::PoolLayer
Subclassed by paddle::AvgPoolProjectionLayer, paddle::MaxPoolProjectionLayer
CudnnPoolLayer¶
-
class
paddle::
CudnnPoolLayer
¶ CudnnPoolLayer is subclass of PoolLayer, which is implemented by cudnn api and only supports GPU.
The config file api is img_pool_layer.
Inherits from paddle::PoolLayer
Public Functions
-
CudnnPoolLayer
(const LayerConfig &config)¶
-
~CudnnPoolLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
reshape
(int batchSize)¶ Reshape input and output tensor descriptor. The batch size maybe change during training in last batch of each pass. So reshaping is needed.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
int
outputSize
(int imageSize, int windowSize, int padding, int stride)¶ Calculate output size according window size of pooling.
Public Static Functions
-
bool
typeCheck
(const std::string &poolType, hl_pooling_mode_t *mode = nullptr)¶
Protected Attributes
-
int
windowHeight
¶
-
int
windowWidth
¶
-
int
heightPadding
¶
-
int
widthPadding
¶
-
int
strideHeight
¶
-
int
strideWidth
¶
-
int
imageH_
¶
-
int
imageW_
¶
-
int
outputH_
¶
-
int
outputW_
¶
-
hl_pooling_mode_t
mode_
¶ mode_ is poolint type, inlcuding “cudnn-max-pool”, “cudnn-avg-pool” “cudnn-avg-excl-pad-pool”.
-
hl_tensor_descriptor
inputDesc_
¶ cudnn tensor descriptor for input.
-
hl_tensor_descriptor
outputDesc_
¶ cudnn tensor descriptor for output.
-
hl_pooling_descriptor
poolingDesc_
¶ A description of a pooling operation.
-
Norm Layers¶
NormLayer¶
-
class
paddle::
NormLayer
¶ basic parent layer of normalization Normalize the input in local region
Inherits from paddle::Layer
Subclassed by paddle::ResponseNormLayer
Public Functions
-
NormLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
CMRProjectionNormLayer¶
-
class
paddle::
CMRProjectionNormLayer
¶ response normalization across feature maps namely normalize in number of size_ channels
Inherits from paddle::ResponseNormLayer
Public Functions
-
CMRProjectionNormLayer
(const LayerConfig &config)¶
-
~CMRProjectionNormLayer
()¶
-
size_t
getSize
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
bool
blocked_
¶
-
DataNormLayer¶
-
class
paddle::
DataNormLayer
¶ A layer for data normalization Input: One and only one input layer is accepted. The input layer must be DataLayer with dense data type. Output: The normalization of the input data
Reference: LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine
Three data normalization methoeds are considered z-score: y = (x-mean)/std min-max: y = (x-min)/(max-min) decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
Inherits from paddle::Layer
Public Functions
-
DataNormLayer
(const LayerConfig &config)¶
-
~DataNormLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
ResponseNormLayer¶
-
class
paddle::
ResponseNormLayer
¶ response normalization within feature maps namely normalize in independent channel When code refactoring, we delete the original implementation. Need to implement in the futrue.
Inherits from paddle::NormLayer
Subclassed by paddle::CMRProjectionNormLayer
Public Functions
-
ResponseNormLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
BatchNormBaseLayer¶
-
class
paddle::
BatchNormBaseLayer
¶ Batch normalization layer use to normalizes the input to across the batch.
By default, calculating global mean and variance statistics via a running average in the training peroid. Then the pre-calculated global mean and variance are used for testing.
Moving mean and variance are located in Parameter object when constructing and the calculation will change them. Now we only save global mean and variance of one thread in first node for GPU. But the calculation in CPU is different, because parameters are shared by multiple threads. Here using ShareCpuMatrix with lock to calculate. We still save global mean and variance in first node in CPU when multi machine.
[1] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” arXiv preprint arXiv:1502.03167 (2015).
Inherits from paddle::Layer
Subclassed by paddle::BatchNormalizationLayer, paddle::CudnnBatchNormLayer
Public Functions
-
BatchNormBaseLayer
(const LayerConfig &config)¶
-
~BatchNormBaseLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
calFeatureMapSize
()¶ Calculate feature map size. Some input uses frameHeight and frameWidth to store feature size.
Public Static Functions
Protected Attributes
-
std::unique_ptr<Weight>
weight_
¶ Batch normalization scale parameter, which is referred to as gamma in in original paper.
-
std::unique_ptr<Weight>
biases_
¶ Batch normalization bias parameter, which is referred to as beta in in original paper.
-
MatrixPtr
savedMean_
¶ Save intermediate results computed during the forward pass, these can then be reused to speed up the backward pass.
-
int
imgSize_
¶ Height or width of input image feature, now height is equal to width. imgSize is 1 if the input is fully-connected layer.
-
int
imageH_
¶
-
int
imageW_
¶
-
int
imgPixels_
¶ Height * Width.
-
int
channels_
¶ Feature dimension. If the input layer is conv layer, it is the channels of feature map of the conv layer. If the input layer is fully-connected layer, it is the dimension of fc layer.
-
bool
useGlobalStats_
¶
-
real
movingAvgFraction_
¶
-
BatchNormalizationLayer¶
-
class
paddle::
BatchNormalizationLayer
¶ A Inheritance class of Batch normalization layer. It supports both CPU and GPU.
The config file api is batch_norm_layer.
Inherits from paddle::BatchNormBaseLayer
Public Functions
-
BatchNormalizationLayer
(const LayerConfig &config)¶
-
~BatchNormalizationLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Functions
-
void
setMeanAndStd
()¶ Load pre-calculated mean and std.
-
void
calMovingMeanAndVar
()¶ Calculate moving mean and variance.
Protected Attributes
-
bool
firstTest_
¶ Load mean and variance only once flag.
Protected Static Attributes
-
const real
EPS
¶ Epsilon value used in the batch normalization formula.
-
CudnnBatchNormLayer¶
-
class
paddle::
CudnnBatchNormLayer
¶ Cudnn Batch normalization layer use to cuDNN lib to implentment.
The config file api is batch_norm_layer.
- Note
- Cudnn version must >= v4.0, and better to use the latest version (v5.1).
Inherits from paddle::BatchNormBaseLayer
Public Functions
-
CudnnBatchNormLayer
(const LayerConfig &config)¶
-
~CudnnBatchNormLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
reshape
(int batchSize)¶ reshape tensor of ioDesc_.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
hl_tensor_descriptor
ioDesc_
¶ Input/output tensor descriptor desc.
-
hl_tensor_descriptor
bnParamDesc_
¶ Shared tensor descriptor desc for the 6 tenros: bnScale, bnBias, running mean/var, save_mean/var
Protected Static Attributes
-
const double
EPS
¶ Epsilon value used in the batch normalization formula. Minimum allowed value is CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value should be used in forward and backward functions.
SumToOneNormLayer¶
-
class
paddle::
SumToOneNormLayer
¶ A layer for sum-to-one normalization, which is used in NEURAL TURING MACHINE.
\[ out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]} \]where \(in\) is a (batchSize x dataDim) input vector, and \(out\) is a (batchSize x dataDim) output vector.The config file api is sum_to_one_norm_layer.
Inherits from paddle::Layer
Public Functions
-
SumToOneNormLayer
(const LayerConfig &config)¶
-
~SumToOneNormLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Activation Layer¶
ParameterReluLayer¶
-
class
paddle::
ParameterReluLayer
¶ ParameterReluLayer active inputs with learnable parameter weight_. forward:
\[\begin{split} y = x > 0 ? x : w .* x \end{split}\]backward:\[\begin{split} dx = x > 0 ? dy : w .* dy \\ dw = x > 0 ? 0 : dy.*x \end{split}\]Here, x is the input, w is the weight, y is the output. dx, dw, dy is the gradient.Inherits from paddle::Layer
Public Functions
-
ParameterReluLayer
(const LayerConfig &config)¶
-
~ParameterReluLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
size_t
partialSum_
¶ partialSum_ makes a group of inputs share same weights,
- partialSum_ = 1: element wise activation: each element has a weight_,
- partialSum_ = number of elements in one channel, channels wise parameter activation, elements in a channel share same weight_,
- partialSum_ = number of outputs all elements share same weight_,
-
Recurrent Layers¶
RecurrentLayer¶
-
class
paddle::
RecurrentLayer
¶ RecurrentLayer takes 1 input layer. The output size is the same with input layer. For each sequence [start, end] it performs the following computation:
\[\begin{split} out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end \end{split}\]If reversed is true, the order is reversed:\[\begin{split} out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end \end{split}\]There are two methods to calculate rnn. One way is to compute rnn one sequence by one sequence. The other way is to reorganize the input into batches, then compute rnn one batch by one batch. Users can select them by rnn_use_batch flag.Inherits from paddle::Layer
Public Functions
-
RecurrentLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
resetState
()¶ Reset the internal state variables. Allocate them if they have not been allocated. This function need to called before Layer::forward() for generating sequence.
This is used for sequence generation. When generating sequence, the calculation at current timestamp depends on the state from previous timestamp. The model needs to keep the information about the previous timestamp in the state variables. Layers such as RecurrentLayer, LstmLayer and ContextLayer have state variables.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state.
- Return
- A copy of internal state.
Protected Functions
-
void
forwardSequence
(int batchSize, size_t numSequences, const int *starts)¶ If user do not set rnn_use_batch=true, it will compute rnn forward one sequence by one sequence in default.
- Parameters
batchSize
-Total words number of all samples in this batch.
numSequences
-The sample number.
starts
-Each start position of each samples.
-
void
forwardOneSequence
(int start, int length)¶ Compute rnn forward by one sequence.
- Parameters
start
-The start position of this sequence (or sample).
length
-The length of this sequence (or sample), namely the words number of this sequence.
-
void
backwardSequence
(int batchSize, size_t numSequences, const int *starts)¶ Compute rnn backward one sequence by onesequence.
- Parameters
batchSize
-Total words number of all samples in this batch.
numSequences
-The sample number.
starts
-Each start position of each samples.
-
void
backwardOneSequence
(int start, int length)¶ Compute rnn backward by one sequence.
- Parameters
start
-The start position of this sequence (or sample).
length
-The length of this sequence (or sample), namely the words number of this sequence.
-
void
forwardBatch
(int batchSize, size_t numSequences, const int *starts)¶ Reorganize input into batches and compute rnn forward batch by batch. It will convert batch shape to sequence after finishing forward. The batch info can refer to SequenceToBatch class.
- Parameters
batchSize
-Total words number of all samples in this batch.
numSequences
-The sample number.
starts
-Each start position of each samples.
-
void
backwardBatch
(int batchSize, size_t numSequences, const int *starts)¶ Reorganize input into batches and compute rnn forward batch by batch.
- Parameters
batchSize
-Total words number of all samples in this batch.
numSequences
-The sample number.
starts
-Each start position of each samples.
Protected Attributes
-
bool
reversed_
¶ Whether compute rnn by reverse.
-
std::unique_ptr<SequenceToBatch>
batchValue_
¶ If compute batch by batch, batchValue_ will be used to save the reorganized input value.
-
std::unique_ptr<SequenceToBatch>
batchGrad_
¶ If compute batch by batch, batchGrad_ will be used to save the gradient with respect to reorganized input value.
-
SequenceToBatch¶
-
class
paddle::
SequenceToBatch
¶ Public Functions
-
SequenceToBatch
(bool useGpu)¶
-
void
resizeOrCreateBatch
(int batchSize, size_t numSequences, const int *seqStarts, bool reversed, bool prevBatchState = false)¶
-
size_t
getNumBatch
() const¶
Protected Functions
Protected Attributes
-
IVectorPtr
batchStartPositions_
¶
-
IVectorPtr
seq2BatchIdx_
¶
-
IVectorPtr
cpuSeq2BatchIdx_
¶
-
IVectorPtr
cpuSeqIdx_
¶
-
IVectorPtr
cpuSeqEndIdxInBatch_
¶
-
IVectorPtr
seqIdx_
¶
-
IVectorPtr
seqEndIdxInBatch_
¶
-
size_t
numBatch_
¶
-
bool
useGpu_
¶
-
LSTM¶
LstmLayer¶
-
class
paddle::
LstmLayer
¶ LstmLayer takes 1 input layer with size * 4. Input layer is diveded into 4 equal parts: (input_s, input_ig, input_fg, input_og)
For each sequence [start, end] it performs the following computation:
output_{i} = actState(state_{i}) * actGate(outputGate_{i}) state_{i} = actInput(input_s_{i} + bias_s + output_{i-1} * recurrIW) * actGate(inputGate_{i}) + actGate(forgetGate_{i}) * state_{i-1} inputGate = input_ig_{i} + bias_ig + output_{i-1} * recurrIGW + state_{i-1} * inputCheck ouputGate = input_og_{i} + bias_og + output_{i-1} * recurrOGW + state_{i} * outputCheck forgetGate = input_fg_{i} + bias_fg + output_{i-1} * recurrFGW + state_{i-1} * forgetCheck
- parameter[0] consists of (recurrIW, recurrIGW, recurrFGW, recurrOGW)
- baisParameter consists of (bias_s, bias_ig, bias_og, bias_fg, inputCheck, forgetCheck, outputCheck)
- actInput is defined by config active_type.
- actState is defined by config active_state_type.
- actGate is defined by config actvie_gate_type.
There are two ways to compute, namely one sequence by one sequence or one batch by one batch. By default and no setting pre_batch_state true, it will compute batch by batch.
The formula in the paper is as follows:
\[\begin{split} i_t = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) \\ f_t = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) \\ \tilde{c_t} = tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c) \\ o_t = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o) \\ c_t = f_t * c_{t-1} + i_t * \tilde{c_t} \\ h_t = o_t tanh(c_t) \end{split}\]The weight ([size, 4*size]) contains \(W_{hi}, W_{hf}, W_{hc}, W_{ho}\). The bias contains \(b_i, b_f, b_c, b_o\) and \(W_{ci}, W_{cf}, W_{co}\).
- Note
- These \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) operations on the input sequence were NOT included in LstmLayer. So users should use fc_layer or mixed_layer before lstm_later.
Inherits from paddle::Layer, paddle::LstmCompute
Subclassed by paddle::MDLstmLayer
Public Functions
-
LstmLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
resetState
()¶ Reset the internal state variables. Allocate them if they have not been allocated. This function need to called before Layer::forward() for generating sequence.
This is used for sequence generation. When generating sequence, the calculation at current timestamp depends on the state from previous timestamp. The model needs to keep the information about the previous timestamp in the state variables. Layers such as RecurrentLayer, LstmLayer and ContextLayer have state variables.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state.
- Return
- A copy of internal state.
Protected Functions
-
void
forwardSequence
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputValue)¶ Compute lstm forward one sequence by one sequence.
- Parameters
batchSize
-The batchSize is not equal to the batch_size in the config file. It is the total words number of all samples in this forward batch.
numSequences
-The sample number. It is equal to the batch_size in the config file.
starts
-Each start position of each samples.
inputValue
-The input values.
-
void
backwardSequence
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputGrad)¶ Compute lstm backward one sequence by one sequence.
-
void
forwardBatch
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputValue)¶ Compute lstm forward one batch by one batch. The batch value is reorganized by SequenceToBatch class. The batch output value will be convert into sequence value after finishing forward. Here, one batch contains one word of each sample. If the length of each sample is not equality, the batch will not pads zero and contains less words. The total batch numbers are the max length of the sequence. The details can refer to SequenceToBatch class. On GPU mode, it will launch GPU kernel for loop.
for (int i = 0; i < numBatch(max_sequence_length); ++i) { compute one batch. }
-
void
backwardBatch
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputGrad)¶ Compute lstm backward one batch by one batch.
-
void
forwardSeqParallel
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputValue)¶ This function only supports GPU. It not need to reorganize input into batch value. It will launch one kernel to parallelly compute forward propagation in sequence level.
-
void
backwardSeqParallel
(int batchSize, size_t numSequences, const int *starts, MatrixPtr inputGrad)¶ Backward propagation corresponding to forwardSeqParallel.
-
void
getPrevBatchOutput
(size_t numSequences)¶ This function is used for sequence generation and get output after forwardBatch.
-
void
getPrevBatchState
(size_t numSequences)¶ This function is used for sequence generation and get state after forwardBatch.
Protected Attributes
-
std::unique_ptr<Weight>
weight_
¶ Learned parameters, shape: (size, 4*size). The weight ([size, 4*size]) contains \(W_{hi}, W_{hf}, W_{hc}, W_{ho}\).
-
std::unique_ptr<Weight>
bias_
¶ Learned bias parameter, shape: (1, 7 * size). The bias contains \(b_i, b_f, b_c, b_o\) and \(W_{ci}, W_{cf}, W_{co}\).
-
bool
reversed_
¶ Whether it is reversed lstm.
-
bool
useBatch_
¶ Whether to use batch method to compute.
-
bool
useSeqParallel_
¶ Whether to use sequence parallell method to compute.
-
std::unique_ptr<SequenceToBatch>
batchValue_
¶ batchValue_ is used in method of batch calculation. It stores the batch value after reorganized input.
-
std::unique_ptr<SequenceToBatch>
batchGrad_
¶ The gradient of batchValue_.
LstmStepLayer¶
-
class
paddle::
LstmStepLayer
¶ Inherits from paddle::Layer, paddle::LstmCompute
Public Functions
-
LstmStepLayer
(const LayerConfig &config)¶
-
~LstmStepLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
LstmCompute¶
-
class
paddle::
LstmCompute
¶ Subclassed by paddle::LstmLayer, paddle::LstmStepLayer
Public Functions
-
void
init
(LayerConfig &config)¶
- template <bool useGpu>
-
void
forwardBatch
(hl_lstm_value value, int frameSize, int batchSize)¶ LstmLayer batch compute API (forwardBatch, backwardBatch). If use batch compute api, lstm value(and grad) need to be batch structure. Compute order: forwardBatch: for 0 <= id < numBatch backwardBatch: for numBatch > id >= 0
- template <bool useGpu>
-
void
backwardBatch
(hl_lstm_value value, hl_lstm_grad grad, int frameSize, int batchSize)¶
- template <bool useGpu>
-
void
forwardOneSequence
(hl_lstm_value value, int frameSize)¶ LstmLayer sequence compute API (forwardOneSequence, backwardOneSequence). Compute order(for each sequence): forwardOneSequence: if (!reversed) for 0 <= seqId < seqLength if (reversed) for seqLength > seqId >= 0 backwardOneSequence: if (!reversed) for seqLength > seqId >= 0 if (reversed) for 0 <= seqId < seqLength
- template <bool useGpu>
-
void
backwardOneSequence
(hl_lstm_value value, hl_lstm_grad grad, int frameSize)¶
- template <>
-
void
forwardOneSequence
(hl_lstm_value value, int frameSize)¶
- template <>
-
void
backwardOneSequence
(hl_lstm_value value, hl_lstm_grad grad, int frameSize)¶
- template <>
-
void
forwardBatch
(hl_lstm_value value, int frameSize, int batchSize)¶
- template <>
-
void
backwardBatch
(hl_lstm_value value, hl_lstm_grad grad, int frameSize, int batchSize)¶
Public Members
-
hl_activation_mode_t
activeNode_
¶
-
hl_activation_mode_t
activeGate_
¶
-
hl_activation_mode_t
activeState_
¶
-
void
MDLSTM¶
MDLstmLayer¶
-
class
paddle::
MDLstmLayer
¶ Inherits from paddle::LstmLayer
Public Functions
-
MDLstmLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Functions
-
void
forwardOneSequence
(int start, CoordIterator &coordIter)¶
-
void
backwardOneSequence
(int start, CoordIterator &coordIter)¶
-
void
forwardGate2OutputSequence
(int start, CoordIterator &coordIter)¶
-
void
backwardGate2OutputSequence
(int start, CoordIterator &coordIter)¶
Protected Attributes
-
std::unique_ptr<ActivationFunction>
activationGate_
¶
-
std::unique_ptr<ActivationFunction>
activationState_
¶
-
int
numDims_
¶
-
size_t
numBlocks_
¶
-
std::vector<bool>
directions_
¶
-
std::vector<int>
delays_
¶
-
std::vector<std::vector<int>>
dimsV_
¶
-
CoordIterator¶
-
class
paddle::
CoordIterator
¶ Public Functions
-
void
step
(size_t d, bool reversed)¶
-
CoordIterator
(std::vector<int> dim, std::vector<bool> directions)¶
-
CoordIterator &
operator++
()¶
-
CoordIterator &
operator--
()¶
-
std::vector<int> &
curPos
()¶
-
int
offset
()¶
-
int
offset
(const std::vector<int> &pos)¶
-
std::vector<int> &
begin
()¶
-
std::vector<int> &
rbegin
()¶
-
bool
end
()¶
-
bool
getPrePos
(const std::vector<int> &delays, int idx, std::vector<int> &prePos)¶
-
bool
getNextPos
(const std::vector<int> &delays, int idx, std::vector<int> &nextPos)¶
-
void
GRU¶
GatedRecurrentLayer¶
-
class
paddle::
GatedRecurrentLayer
¶ Please refer to “Junyoung Chung, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling”.
GatedRecurrentLayer takes 1 input layer with size * 3. Input layer is diveded into 3 equal parts: (xz_t, xr_t, xi_t). parameter and biasParameter is also diveded into 3 equal parts:
- parameter consists of (U_z, U_r, U)
- baisParameter consists of (bias_z, bias_r, bias_o)
\[\begin{split} update \ gate: z_t = actGate(xz_t + U_z * h_{t-1} + bias_z) \\ reset \ gate: r_t = actGate(xr_t + U_r * h_{t-1} + bias_r) \\ output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, h_{t-1}) + bias_o) \\ hidden \ activation: h_t = dot((1-z_t), h_{t-1}) + dot(z_t, {h}_t) \\ \end{split}\]The config file is grumemory.
- Note
- dot denotes “element-wise multiplication”.
- actNode is defined by config active_type
- actGate is defined by config actvie_gate_type
Inherits from paddle::Layer, paddle::GruCompute
Public Functions
-
GatedRecurrentLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
resetState
()¶ Reset the internal state variables. Allocate them if they have not been allocated. This function need to called before Layer::forward() for generating sequence.
This is used for sequence generation. When generating sequence, the calculation at current timestamp depends on the state from previous timestamp. The model needs to keep the information about the previous timestamp in the state variables. Layers such as RecurrentLayer, LstmLayer and ContextLayer have state variables.
-
virtual void
setState
(LayerStatePtr state)¶ Set layer state.
-
virtual LayerStatePtr
getState
()¶ Get layer state.
- Return
- A copy of internal state.
Protected Functions
Protected Attributes
-
bool
reversed_
¶
-
bool
useBatch_
¶
-
std::unique_ptr<SequenceToBatch>
batchValue_
¶
-
std::unique_ptr<SequenceToBatch>
batchGrad_
¶
-
std::unique_ptr<ActivationFunction>
activationGate_
¶
GruStepLayer¶
-
class
paddle::
GruStepLayer
¶ GruStepLayer is like GatedRecurrentLayer, but used in recurrent layer group. GruStepLayer takes 2 input layer.
- input[0] with size * 3 and diveded into 3 equal parts: (xz_t, xr_t, xi_t).
- input[1] with size: {prev_out}.
parameter and biasParameter is also diveded into 3 equal parts:
parameter consists of (U_z, U_r, U)
baisParameter consists of (bias_z, bias_r, bias_o)
\[\begin{split} update \ gate: z_t = actGate(xz_t + U_z * prev_out + bias_z) \\ reset \ gate: r_t = actGate(xr_t + U_r * prev_out + bias_r) \\ output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, prev_out) + bias_o) \\ output: h_t = dot((1-z_t), prev_out) + dot(z_t, prev_out) \end{split}\]
The config file api if gru_step_layer.
- Note
- dot denotes “element-wise multiplication”.
- actNode is defined by config active_type
- actGate is defined by config actvie_gate_type
Inherits from paddle::Layer, paddle::GruCompute
Public Functions
-
GruStepLayer
(const LayerConfig &config)¶
-
~GruStepLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
GruCompute¶
-
class
paddle::
GruCompute
¶ Subclassed by paddle::GatedRecurrentLayer, paddle::GruStepLayer
Public Functions
-
void
init
(LayerConfig &config)¶
- template <bool useGpu>
-
void
forward
(hl_gru_value value, int frameSize, int batchSize = 1)¶
- template <bool useGpu>
-
void
backward
(hl_gru_value value, hl_gru_grad grad, int frameSize, int batchSize = 1)¶
- template <>
-
void
forward
(hl_gru_value value, int frameSize, int batchSize)¶
- template <>
-
void
backward
(hl_gru_value value, hl_gru_grad grad, int frameSize, int batchSize)¶
-
void
Recurrent Layer Group¶
AgentLayer¶
-
class
paddle::
AgentLayer
¶ AgentLayer use as a virtual input of another layer in config, before execute forward/backward, setRealLayer() should be called to set one and only one real layer
Inherits from paddle::Layer
Subclassed by paddle::SequenceAgentLayer
Public Functions
-
AgentLayer
(const LayerConfig &config)¶
-
~AgentLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
setRealLayer
(LayerPtr layer, int numSamples = 0)¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SequenceAgentLayer¶
-
class
paddle::
SequenceAgentLayer
¶ like AgentLayer, but use first numSamples sequences
Inherits from paddle::AgentLayer
Public Functions
-
SequenceAgentLayer
(const LayerConfig &config)¶
-
~SequenceAgentLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
GatherAgentLayer¶
-
class
paddle::
GatherAgentLayer
¶ Like AgentLayer, but it can gather many real layers. Each real layer give a few rows of a sequence, after gather all real layers, GatherAgentLayer collect a complete sequence.
Inherits from paddle::Layer
Subclassed by paddle::SequenceGatherAgentLayer
Public Functions
-
GatherAgentLayer
(const LayerConfig &config)¶
-
virtual
~GatherAgentLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
copyIdAndSequenceInfo
(const Argument &input, const IVectorPtr &allIds, const std::vector<int> &idIndex)¶
-
void
addRealLayer
(LayerPtr layer)¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
std::vector<LayerPtr>
realLayers_
¶
-
std::vector<IVectorPtr>
idsVec_
¶
-
IVectorPtr
allIds_
¶
-
std::vector<int>
idIndex_
¶
-
SequenceGatherAgentLayer¶
-
class
paddle::
SequenceGatherAgentLayer
¶ Like GatherAgentLayer, but select a few sequence in real layer. ids in addRealLayer() are the ids of selected sequence. It’s used to reorder sequence output.
Inherits from paddle::GatherAgentLayer
Public Functions
-
SequenceGatherAgentLayer
(const LayerConfig &config)¶
-
virtual
~SequenceGatherAgentLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
ScatterAgentLayer¶
-
class
paddle::
ScatterAgentLayer
¶ Like AgentLayer, but only select a few rows in real layer. [idIndex, idIndex + idSize) of ids in setRealLayerAndOutput() are the selected row ids. It’s used to scatter one layer’s output to many small submodels. ScatterAgentLayer can support ids real layer, if it is, the agent will select a few ids in real layer.
Inherits from paddle::Layer
Subclassed by paddle::SequenceScatterAgentLayer
Public Functions
-
ScatterAgentLayer
(const LayerConfig &config)¶
-
virtual
~ScatterAgentLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
setRealLayer
(LayerPtr layer, const std::vector<int> &ids, bool copyId = false)¶ set real layer in generation
- Parameters
layer[input]
-realLayer
ids[input]
-row id in real layer
copyId[input]
-whether to copy a cpu version of ids, false(default) in ScatterAgentLayer, and true in SequenceScatterAgentLayer.
-
void
setRealLayerAndOutput
(LayerPtr layer, const Argument &outArg, const IVectorPtr &ids, int idIndex, int idSize)¶
-
void
setSequenceStartPositions
(const ICpuGpuVectorPtr &sequenceStartPositions, int seqStartPosIndex, int numSequences)¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SequenceScatterAgentLayer¶
-
class
paddle::
SequenceScatterAgentLayer
¶ Like ScatterAgentLayer, but select a few sequence in real layer. ids in setRealLayer() or setRealLayerAndOutput() are the ids of selected sequence. It’s used to reorder sequence input.
Inherits from paddle::ScatterAgentLayer
Public Functions
-
SequenceScatterAgentLayer
(const LayerConfig &config)¶
-
virtual
~SequenceScatterAgentLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
GetOutputLayer¶
-
class
paddle::
GetOutputLayer
¶ Inherits from paddle::Layer
Public Functions
-
GetOutputLayer
(const LayerConfig &config)¶
-
~GetOutputLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Mixed Layer¶
-
class
paddle::
MixedLayer
¶ A mixed layer has multiple input layers. Each input layer was processed by a Projection or Operator. The results of all projections or Operators are summed together with bias (if configured), and then go through an activation function and dropout (if configured).
The config file api is mixed_layer.
Inherits from paddle::Layer
Public Functions
-
MixedLayer
(const LayerConfig &config)¶
-
~MixedLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
prefetch
()¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
resetState
()¶ Reset the internal state variables. Allocate them if they have not been allocated. This function need to called before Layer::forward() for generating sequence.
This is used for sequence generation. When generating sequence, the calculation at current timestamp depends on the state from previous timestamp. The model needs to keep the information about the previous timestamp in the state variables. Layers such as RecurrentLayer, LstmLayer and ContextLayer have state variables.
-
virtual void
setState
(LayerStatePtr state)¶ setState() should be called after getState(). Argument state consists of all projections states.
-
virtual LayerStatePtr
getState
()¶ Return state which consists of all projections states.
-
DotMulProjection¶
-
class
paddle::
DotMulProjection
¶ DotMulProjection performs element-wise multiplication with weight:
\[ out.row[i] += in.row[i] .* weight \]where \(.*\) means element-wise multiplication.The config file api is dotmul_projection.
Inherits from paddle::Projection
Public Functions
-
DotMulProjection
(const ProjectionConfig &config, const ParameterPtr ¶meter, bool useGpu)¶
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
DotMulOperator¶
-
class
paddle::
DotMulOperator
¶ DotMulOperator takes two inputs, performs element-wise multiplication:
\[ out.row[i] += scale * (in1.row[i] .* in2.row[i]) \]where \(.*\) means element-wise multiplication, and scale is a config scalar, its default value is one.The config file api is dotmul_operator.
Inherits from paddle::Operator
FullMatrixProjection¶
-
class
paddle::
FullMatrixProjection
¶ FullMatrixProjection performs full matrix multiplication:
\[ out.row[i] += in.row[i] * weight \]The config file api is full_matrix_projection.
Inherits from paddle::Projection
Public Functions
-
FullMatrixProjection
(const ProjectionConfig &config, const ParameterPtr ¶meter, bool useGpu)¶
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
IdentityProjection¶
-
class
paddle::
IdentityProjection
¶ IdentityProjection performs addition:
\[ out.row[i] += in.row[i] \]The config file api is identity_projection.
Inherits from paddle::Projection
Public Functions
-
IdentityProjection
(const ProjectionConfig &config, const ParameterPtr ¶meter, bool useGpu)¶ Constructed function.
- Note
- IdentityProjection should not have any parameter.
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
IdentityOffsetProjection¶
-
class
paddle::
IdentityOffsetProjection
¶ IdentityOffsetProjection likes IdentityProjection, but layer size may be smaller than input size. It selects dimensions [offset, offset+layer_size) from input to perform addition:
\[ out.row[i] += in.row[i + \textrm{offset}] \]The config file api is identity_projection.
Inherits from paddle::Projection
Public Functions
-
IdentityOffsetProjection
(const ProjectionConfig &config, const ParameterPtr ¶meter, bool useGpu)¶ Constructed function.
- Note
- IdentityOffsetProjection should not have any parameter.
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
TableProjection¶
-
class
paddle::
TableProjection
¶ Table projection takes index data input. It select rows from parameter where row_id is in input_ids:
\[ out.row[i] += table.row[ids[i]] \]where \(out\) is out, \(table\) is parameter, \(ids\) is input_ids, and \(i\) is row_id.The config file api is table_projection.
- Note
- If \(ids[i] = -1\), it will be ignored.
Inherits from paddle::Projection
Public Functions
-
TableProjection
(const ProjectionConfig &config, const ParameterPtr ¶meter, bool useGpu)¶
-
virtual void
prefetch
(const Argument *in)¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
TransposedFullMatrixProjection¶
-
class
paddle::
TransposedFullMatrixProjection
¶ TransposedFullMatrixProjection performs full matrix multiplication: out.row[i] += in.row[i] * weight.transpose.
The config file api is trans_full_matrix_projection.
Inherits from paddle::Projection
Public Functions
-
TransposedFullMatrixProjection
(const ProjectionConfig &config, ParameterPtr parameter, bool useGPu)¶
-
virtual void
forward
()¶
-
virtual void
backward
(const UpdateCallback &callback)¶
-
Aggregate Layers¶
Aggregate¶
AverageLayer¶
-
class
paddle::
AverageLayer
¶ A layer for “internal average” for sequence input. Input: one or more sequences. Each sequence contains some instances. If AverageLevel = kNonSeq: Output: output size is the number of input sequences (NOT input instances) output[i] = average_{for each instance in this sequence}{input[i]} If AverageLevel = kSeq: Check input sequence must has sub-sequence Output: output size is the number of input sub-sequences output[i] = average_{for each instance in this sub-sequence}{input[i]}
Inherits from paddle::Layer
Public Types
Public Functions
-
AverageLayer
(const LayerConfig &config)¶
-
~AverageLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
MaxLayer¶
-
class
paddle::
MaxLayer
¶ A layer for “internal max” for sequence input. Input: one or more sequences. Each sequence contains some instances. If MaxLevel = kNonSeq: Output: output size is the number of input sequences (NOT input instances) output[i] = max_{for each instance in this sequence}{input[i]} If MaxLevel = kSeq: Check input sequence must has sub-sequence Output: output size is the number of input sub-sequences output[i] = max_{for each instance in this sub-sequence}{input[i]}
Inherits from paddle::Layer
Public Functions
-
MaxLayer
(const LayerConfig &config)¶
-
~MaxLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SequenceLastInstanceLayer¶
-
class
paddle::
SequenceLastInstanceLayer
¶ A layer for extracting the last instance of the input sequence. Input: a sequence If SequenceLevel = kNonseq: Output: a sequence containing only the last instance of the input sequence If SequenceLevel = kSeq: Check input sequence must has sub-sequence Output: a sequence containing only the last instance of each sub-sequence of the input sequence
Inherits from paddle::Layer
Public Functions
-
SequenceLastInstanceLayer
(const LayerConfig &config)¶
-
~SequenceLastInstanceLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Concat¶
ConcatenateLayer¶
-
class
paddle::
ConcatenateLayer
¶ A concatenate layer has multiple input layers. It concatenates rows of each input as one row for the output of this layer and apply activation.
Inherits from paddle::Layer
Public Functions
-
ConcatenateLayer
(const LayerConfig &config)¶
-
~ConcatenateLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
ConcatenateLayer2¶
-
class
paddle::
ConcatenateLayer2
¶ concat2 layer is like concat layer, but each input layer was processed by a Projection.
Inherits from paddle::Layer
Public Functions
-
ConcatenateLayer2
(const LayerConfig &config)¶
-
~ConcatenateLayer2
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
std::vector<std::unique_ptr<Projection>>
projections_
¶
-
std::vector<std::pair<size_t, size_t>>
projCol_
¶
-
SequenceConcatLayer¶
-
class
paddle::
SequenceConcatLayer
¶ A layer for concatenating the first sequence with the second sequence following the first Input: two sequences each containing some instances Output: a concatenated sequence of the two input sequences
Inherits from paddle::Layer
Public Functions
-
SequenceConcatLayer
(const LayerConfig &config)¶
-
~SequenceConcatLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Subset¶
SubSequenceLayer¶
-
class
paddle::
SubSequenceLayer
¶ A layer for taking the subsequence according to given offset and size Input: original sequence, offset, size Output: subsequence
Inherits from paddle::Layer
Public Functions
-
SubSequenceLayer
(const LayerConfig &config)¶
-
~SubSequenceLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Reshaping Layers¶
BlockExpandLayer¶
-
class
paddle::
BlockExpandLayer
¶ Expand feature map to minibatch matrix.
matrix width is: blockH_ * blockW_ * channels_
matirx height is: outputH_ * outputW_
\[\begin{split} outputH\_ = 1 + (2 * paddingH\_ + imgSizeH\_ - blockH\_ + strideH\_ - 1) / strideH\_ \\ outputW\_ = 1 + (2 * paddingW\_ + imgSizeW\_ - blockW\_ + strideW\_ - 1) / strideW\_ \end{split}\]
The expand method is the same with ExpandConvLayer, but saved the transposed value. After expanding, output_.sequenceStartPositions will store timeline. The number of time steps are outputH_ * outputW_ and the dimension of each time step is blockH_ * blockW_ * channels_. This layer can be used after convolution neural network, and before recurrent neural network.
The config file api is block_expand_layer.
Inherits from paddle::Layer
Public Functions
-
BlockExpandLayer
(const LayerConfig &config)¶
-
~BlockExpandLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Functions
-
size_t
getBlockNum
()¶ Calculate outputH_ and outputW_ and return block number which actually is time steps.
- Return
- time steps, outoutH_ * outputW_.
ExpandLayer¶
-
class
paddle::
ExpandLayer
¶ A layer for “Expand Dense data or (sequence data where the length of each sequence is one) to sequence data.”
It should have exactly 2 input, one for data, one for size:
- first one for data
- If ExpandLevel = kNonSeq: dense data
- If ExpandLevel = kSeq: sequence data where the length of each sequence is one
- second one only for sequence info
- should be sequence data with or without sub-sequence.
And the output size is the batch size(not instances) of second input.
The config file api is expand_layer.
Inherits from paddle::Layer
Public Functions
-
ExpandLayer
(const LayerConfig &config)¶
-
~ExpandLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Types
Protected Attributes
-
int
type_
¶ store the ExpandLevel
-
IVectorPtr
cpuExpandStartsPos_
¶ expanded sequenceStartPositions or subSequenceStartPositions of input[1]
-
IVectorPtr
expandStartsPos_
¶ point to cpuExpandStartsPos_ when useGpu_ is false, copy from cpuExpandStartsPos_ when useGpu_ is true
- first one for data
FeatureMapExpandLayer¶
-
class
paddle::
FeatureMapExpandLayer
¶ A layer for expanding a batch of images to feature maps. Each data of the input is a 2 dimensional matrix. Each element of the matrix is replicated num_filters times to create a feature map with num_filters channels.
- Input: Input one should be dense image data.
- Output: expanded fature maps. \[ y.row[i] = x.row[i \mod x.width], i = 0,1,..., (x.width * num\_filters - 1) \]For example, num_filters = 4:
x = [a1,a2; b1,b2] y = [a1, a2, a1, a2, a1, a2, a1, a2; b1, b2, b1, b2, b1, b2, b1, b2;]
Inherits from paddle::Layer
Public Functions
-
FeatureMapExpandLayer
(const LayerConfig &config)¶
-
~FeatureMapExpandLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
ResizeLayer¶
-
class
paddle::
ResizeLayer
¶ Inherits from paddle::Layer
Public Functions
-
ResizeLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SequenceReshapeLayer¶
-
class
paddle::
SequenceReshapeLayer
¶ A layer for reshaping the sequence Input: a sequence Output: a sequence
Inherits from paddle::Layer
Public Functions
-
SequenceReshapeLayer
(const LayerConfig &config)¶
-
~SequenceReshapeLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Math Layers¶
AddtoLayer¶
-
class
paddle::
AddtoLayer
¶ This layer just simply add all input layers together, then activate the sum inputs. Each input of this layer should be the same size, which is also the output size of this layer.
\[ y=f(\sum_{i}x_i + b) \]where \(y\) is output, \(x\) is input, \(b\) is bias, and \(f\) is activation function.The config file api is addto_layer.
Inherits from paddle::Layer
Public Functions
-
AddtoLayer
(const LayerConfig &config)¶
-
~AddtoLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization of AddtoLayer.
-
virtual void
forward
(PassType passType)¶ Forward propagation.
- Note
- There is no weight matrix for each input, because it just a simple add operation.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation.
-
ConvexCombinationLayer¶
-
class
paddle::
ConvexCombinationLayer
¶ A layer for convex weighted average of vectors, which is used in NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE.
- Input: the first input contains the convex weights (batchSize x weightDim), and the shape of second input is (batchSize x (weightdim*dataDim)).
- Output: the shape of output is (batchSize x dataDim). \[ out[i][j] = \sum_{j}(in0(i, j) * in1(i,j + i * dataDim)), i = 0,1,...,(batchSize-1); j = 0, 1,...,(dataDim-1) \]
The config file api is convex_comb_layer.
Inherits from paddle::Layer
Public Functions
-
ConvexCombinationLayer
(const LayerConfig &config)¶
-
~ConvexCombinationLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
InterpolationLayer¶
-
class
paddle::
InterpolationLayer
¶ A layer for linear interpolation with two inputs, which is used in NEURAL TURING MACHINE.
\[ y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i] \]where \(x_1\) and \(x_2\) are two (batchSize x dataDim) inputs, \(w\) is (batchSize x 1) weight vector, and \(y\) is (batchSize x dataDim) output.The config file api is interpolation_layer.
Inherits from paddle::Layer
Public Functions
-
InterpolationLayer
(const LayerConfig &config)¶
-
~InterpolationLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
MultiplexLayer¶
-
class
paddle::
MultiplexLayer
¶ This layer multiplex multiple layers according to the index, which is provided by the first input layer.
- Input[0]: the index of the layer to output of size batchSize.
- Input[1:N]; the candidate output data. For each index i from 0 to batchSize -1, the output is the i-th row of the (index[i] + 1)-th layer.
For each i-th row of output:
\[ y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1) \]where, y is output. \(x_{k}\) is the k-th input layer and \(k = x_{0}[i] + 1\).Inherits from paddle::Layer
Public Functions
-
MultiplexLayer
(const LayerConfig &config)¶
-
~MultiplexLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
OuterProdLayer¶
-
class
paddle::
OuterProdLayer
¶ A layer for computing the outer product of two vectors, which is used in NEURAL TURING MACHINE Input: two vectors: batchSize x dim1, batchSize x dim2 Output: a matrix: (batchSize x (dim1*dim2))
Inherits from paddle::Layer
Public Functions
-
OuterProdLayer
(const LayerConfig &config)¶
-
~OuterProdLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
PowerLayer¶
-
class
paddle::
PowerLayer
¶ This layer applys a power function to a vector element-wise, which is used in NEURAL TURING MACHINE.
\[ y = x^w \]where \(x\) is a input vector, \(w\) is scalar weight, and output \(y\) is a vector.The config file api is power_layer.
Inherits from paddle::Layer
Public Functions
-
PowerLayer
(const LayerConfig &config)¶
-
~PowerLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
ScalingLayer¶
-
class
paddle::
ScalingLayer
¶ A layer for each row of a matrix, multiplying with a element of a vector, which is used in NEURAL TURING MACHINE.
\[ y.row[i] = w[i] * x.row[i] \]where \(x\) is (batchSize x dataDim) input, \(w\) is (batchSize x 1) weight vector, and \(y\) is (batchSize x dataDim) output.The config file api is scaling_layer.
Inherits from paddle::Layer
Public Functions
-
ScalingLayer
(const LayerConfig &config)¶
-
~ScalingLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SlopeInterceptLayer¶
-
class
paddle::
SlopeInterceptLayer
¶ A layer for applying a slope and an intercept to the input element-wise. This layer is used in NEURAL TURING MACHINE.
\[ y = ax + b \]- Note
- There is no activation and weight in this layer.
Here, a is scale and b is offset, which are provided as attributes of the layer.
The config file api is slope_intercept_layer.
Inherits from paddle::Layer
Public Functions
-
SlopeInterceptLayer
(const LayerConfig &config)¶
-
~SlopeInterceptLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
TensorLayer¶
-
class
paddle::
TensorLayer
¶ TensorLayer takes two input vectors.
\[ y_{i} = x_{1} * W_{i} * x_{2}^{\rm T}, i=0, 1, ...,K-1 \].- \(x_{1}\): the first input, size is M.
- \(x_{2}\): the second input, size is N.
- y: output, size is K.
- \(y_{i}\): i-th element of y.
- \(W_{i}\): the i-th learned weight, dimensions: [M, N].
- \(x_{2}^{\rm T}\): the transpose of \(x_{2}\).
The config file api is tensor_layer.
Inherits from paddle::Layer
Public Functions
-
TensorLayer
(const LayerConfig &config)¶
-
~TensorLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
TransLayer¶
-
class
paddle::
TransLayer
¶ A layer for transposition.
\[ y = x^\mathrm{T} \]where \(x\) is (M x N) input, and \(y\) is (N x M) output.The config file api is trans_layer.
Inherits from paddle::Layer
Public Functions
-
TransLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Sampling Layers¶
MultinomialSampler¶
-
class
paddle::
MultinomialSampler
¶ Given the probability of N objects, the sampler random select one of the object.
The space requirement is O(N)=O(N * sizeof(Interval)). The computational complexity of generate one sample is O(1).
- Note
- : prob does not have to be unnormalized.
Public Functions
-
MultinomialSampler
(const real *prob, int size)¶
- template <typename URNG>
-
int
gen
(URNG &g)¶ Generate a random sample.
- Return
- Random integer.
- Parameters
g
-is a random number engine. See <random>.
Protected Functions
- template <typename Rand>
-
int
gen1
(Rand rand)¶ Generation.
- Return
- random int number or intervals_[random_int_number].otherId.
- Parameters
rand
-rand is a real random number distribution for the range [0, size).
Protected Attributes
-
std::uniform_real_distribution<double>
rand_
¶
-
struct
Interval
¶
MaxIdLayer¶
-
class
paddle::
MaxIdLayer
¶ A layer for finding the id which has the maximal value for each sample. The result is stored in output_.ids.
The config file api is maxid_layer.
Inherits from paddle::Layer
Public Functions
-
MaxIdLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
SamplingIdLayer¶
-
class
paddle::
SamplingIdLayer
¶ A layer for sampling id from multinomial distribution from the input layer. Sampling one id for one sample. The result is stored in output_.ids.
The config file api is sampling_id_layer.
Inherits from paddle::Layer
Public Functions
-
SamplingIdLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
Cost Layers¶
CostLayer¶
-
class
paddle::
CostLayer
¶ Base class for a particular type of cost layer. This type of cost should have one data layer, one label layer and an optional weight layer as input. The derived class should implemnt forwardImp() and backwardImp() which calculate the cost for data and label. The weight is automatically handled by the base class.
Inherits from paddle::Layer
Subclassed by paddle::HuberTwoClass, paddle::MultiBinaryLabelCrossEntropy, paddle::MultiClassCrossEntropy, paddle::MultiClassCrossEntropyWithSelfNorm, paddle::SoftBinaryClassCrossEntropy, paddle::SumOfSquaresCostLayer
Public Functions
-
CostLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
LayerPtr
getOutputLayer
()¶
-
LayerPtr
getLabelLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
HuberTwoClass¶
-
class
paddle::
HuberTwoClass
¶ Huber loss for robust 2-classes classification.
For label={0, 1}, let y=2*label-1. Given output f, the loss is:
\[\begin{split} Loss = \left\{\begin{matrix} 4 * y * f & \textit{if} \ \ y* f < -1 \\ (1 - y * f)^2 & \textit{if} \ \ -1 < y * f < 1 \\ 0 & \textit{otherwise} \end{matrix}\right. \end{split}\]Inherits from paddle::CostLayer
Public Functions
-
HuberTwoClass
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
LambdaCost¶
-
class
paddle::
LambdaCost
¶ LambdaRank os a method for learning arbitrary information retrieval measures. It can be applied to any algorithm that learns through gradient descent. LambdaRank is a listwise method, in that the cost depends on the sorted order of the documents. LambdaRank gives the gradient of cost function:
\[ \lambda_{ij} = \frac{1}{1 + e^{o_i - o_j}} \left| \Delta_{NDCG} \right| \][1] Christopher J.C. Burges, Robert Ragno, Quoc Viet Le. Learning to Rank with Nonsmooth Cost Functions.
Inherits from paddle::Layer
Public Functions
-
LambdaCost
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
LayerPtr
getOutputLayer
()¶
-
LayerPtr
getScoreLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
onPassEnd
()¶ One pass is finished.
-
real
calcNDCG
(const real *outputScore, const real *score, int size)¶
-
void
calcGrad
(const real *outputScore, const real *score, real *gradData, int size)¶
-
MultiBinaryLabelCrossEntropy¶
-
class
paddle::
MultiBinaryLabelCrossEntropy
¶ Cross entropy for multi binary labels.
\[ cost[i] = -sum(label[i][j]*log(output[i][j]) + (1-label[i][j])*log(1-output[i][j])) \]Inherits from paddle::CostLayer
Public Functions
-
MultiBinaryLabelCrossEntropy
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
MultiClassCrossEntropy¶
-
class
paddle::
MultiClassCrossEntropy
¶ The cross-entropy loss for multi-class classification task. The loss function is:
\[ L = - \sum_{i}{t_{k} * log(P(y=k))} \]Inherits from paddle::CostLayer
Public Functions
-
MultiClassCrossEntropy
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
MultiClassCrossEntropyWithSelfNorm¶
-
class
paddle::
MultiClassCrossEntropyWithSelfNorm
¶ The cross-entropy with self-normalization for multi-class classification.
The loss function is:
\[ L = \sum_{i}[-log(P(x_{i})) + alpha * log(Z(x_{i})^2)] \]The \(Z(x)\) is the softmax normalizer.
[1] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. Fast and robust neural network joint models for statistical machine translation. In Proceedings of the ACL 2014 Conference.
Inherits from paddle::CostLayer
Public Functions
-
MultiClassCrossEntropyWithSelfNorm
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
RankingCost¶
-
class
paddle::
RankingCost
¶ A cost layer for learning to rank (LTR) task. This layer contains at leat three inputs.
\[\begin{split} C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\ o_{i,j} = o_i - o_j \\ \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \} \end{split}\][1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to Rank useing Gradient Descent.
Inherits from paddle::Layer
Public Functions
-
RankingCost
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
LayerPtr
getOutputLayer
(size_t i)¶
-
LayerPtr
getLabelLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
onPassEnd
()¶ One pass is finished.
-
SoftBinaryClassCrossEntropy¶
-
class
paddle::
SoftBinaryClassCrossEntropy
¶ The cross-entropy for soft binary class.
\[ L = \sum_i (\sum_j -y_j(i)*log(x_j(i))-(1-y_j(i))*log(1-x_j(i))) \]Inherits from paddle::CostLayer
Public Functions
-
SoftBinaryClassCrossEntropy
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
SumOfSquaresCostLayer¶
-
class
paddle::
SumOfSquaresCostLayer
¶ This cost layer compute Euclidean (L2) loss for real-valued regression tasks.
\[ L = \frac{1}{2N} \sum_{i=1}^N {|| \hat{y}_i - y_i||_2^2} \]Inherits from paddle::CostLayer
Public Functions
-
SumOfSquaresCostLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
CosSimLayer¶
-
class
paddle::
CosSimLayer
¶ Inherits from paddle::Layer
Public Functions
-
CosSimLayer
(const LayerConfig &config)¶
-
~CosSimLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
Public Members
-
const real
kCosSimScale_
¶
-
CosSimVecMatLayer¶
-
class
paddle::
CosSimVecMatLayer
¶ A layer for computing cosine similarity between a vector an each row of a matrix, out[i] = cos_scale * cos(in1, in2(i,:)); which is used in NEURAL TURING MACHINE Input: a vector (batchSize x dataDim) and a matrix in vec form (batchSize x (weightDim*dataDim)) Output: a vector (batchSize x weightDim)
Inherits from paddle::Layer
Public Functions
-
CosSimVecMatLayer
(const LayerConfig &config)¶
-
~CosSimVecMatLayer
()¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
CRFDecodingLayer¶
-
class
paddle::
CRFDecodingLayer
¶ A layer for calculating the decoding sequence of sequential conditional random field model. The decoding sequence is stored in output_.ids It also calculate error, output_.value[i] is 1 for incorrect decoding or 0 for correct decoding) See LinearChainCRF.h for the detail of the CRF formulation.
Inherits from paddle::CRFLayer
Public Functions
-
CRFDecodingLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Attributes
-
std::unique_ptr<LinearChainCRF>
crf_
¶
-
CRFLayer¶
-
class
paddle::
CRFLayer
¶ A layer for calculating the cost of sequential conditional random field model. See LinearChainCRF.h for the detail of the CRF formulation.
Inherits from paddle::Layer
Subclassed by paddle::CRFDecodingLayer
Public Functions
-
CRFLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
void
forwardImp
(const Argument &output, const Argument &label, VectorPtr parameterValue, VectorPtr parameterGradient)¶
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
void
backwardImp
(const UpdateCallback &callback, const Argument &output, const Argument &label)¶
Protected Attributes
-
size_t
numClasses_
¶
-
ParameterPtr
parameter_
¶
-
std::vector<LinearChainCRF>
crfs_
¶
-
LayerPtr
weightLayer_
¶
-
real
coeff_
¶
-
CTCLayer¶
-
class
paddle::
CTCLayer
¶ Inherits from paddle::Layer
Public Functions
-
CTCLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
void
backwardImp
(const UpdateCallback &callback, const Argument &softmaxSeqs, const Argument &labelSeqs)¶
-
HierarchicalSigmoidLayer¶
-
class
paddle::
HierarchicalSigmoidLayer
¶ Organize the classes into a binary tree. At each node, a sigmoid function is used to calculate the probability of belonging to the right branch. This idea is from “F. Morin, Y. Bengio (AISTATS 05): Hierarchical Probabilistic Neural Network Language Model.”
Here we uses a simple way of making the binary tree. Assuming the number of classes C = 6, The classes are organized as a binary tree in the following way:
*-*-*- 2 | | |- 3 | | | |-*- 4 | |- 5 | |-*- 0 |- 1
where * indicates an internal node, and each leaf node represents a class.
- Node 0 ... C-2 are internal nodes.
- Node C-1 ... 2C-2 are leaf nodes.
- Class c is represented by leaf node \(c+C-1\).
We assign an id for each node:
- the id of root be 0.
- the left child of a node i is 2*i+1.
- the right child of a node i is 2*i+2.
It’s easy to see that:
- the parent of node i is \(\left\lfloor(i-1)/2\right\rfloor\).
- the j-th level ancestor of node i is \(\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\).
- A node i is a left child of its parent if \((i-1)\%2==0\).
The config file api is hsigmod_layer.
Inherits from paddle::Layer
Public Functions
-
HierarchicalSigmoidLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
Protected Functions
-
LayerPtr
getLabelLayer
()¶ The last of inputs is label layer.
LinearChainCRF¶
LinearChainCTC¶
-
class
paddle::
LinearChainCTC
¶ Public Functions
-
LinearChainCTC
(int numClasses, bool normByTimes)¶
-
real
forward
(real *softmaxSeq, int softmaxSeqLen, int *labelSeq, int labelSeqLen)¶
-
void
backward
(real *softmaxSeq, real *softmaxSeqGrad, int *labelSeq, int labelSeqLen)¶
Protected Functions
-
void
segmentRange
(int &start, int &end, int time)¶
-
NCELayer¶
-
class
paddle::
NCELayer
¶ Noise-contrastive estimation Implements the method in the following paper: A fast and simple algorithm for training neural probabilistic language models
Inherits from paddle::Layer
Public Functions
-
NCELayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
void
prepareSamples
()¶
-
virtual void
prefetch
()¶ If use sparse row matrix as parameter, prefetch feature ids in input label.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.
-
void
forwardBias
()¶
-
void
backwardBias
(const UpdateCallback &callback)¶
-
void
forwardOneInput
(int layerId)¶
-
void
backwardOneInput
(int layerId, const UpdateCallback &callback)¶
-
void
forwardCost
()¶
-
void
backwardCost
()¶
-
Validation Layers¶
ValidationLayer¶
-
class
paddle::
ValidationLayer
¶ Inherits from paddle::Layer
Subclassed by paddle::AucValidation, paddle::PnpairValidation
Public Functions
-
ValidationLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
LayerPtr
getOutputLayer
()¶
-
LayerPtr
getLabelLayer
()¶
-
LayerPtr
getInfoLayer
()¶
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback = nullptr)¶ Backward propagation. Should only be called after Layer::forward() function.
-
virtual void
validationImp
(MatrixPtr outputValue, IVectorPtr label) = 0¶
-
virtual void
onPassEnd
() = 0¶ One pass is finished.
-
AucValidation¶
-
class
paddle::
AucValidation
¶ Inherits from paddle::ValidationLayer
Public Functions
-
AucValidation
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
validationImp
(MatrixPtr outputValue, IVectorPtr label)¶
-
virtual void
onPassEnd
()¶ One pass is finished.
Public Members
-
std::vector<PredictionResult>
predictArray_
¶
-
PnpairValidation¶
-
class
paddle::
PnpairValidation
¶ Inherits from paddle::ValidationLayer
Public Functions
-
PnpairValidation
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
validationImp
(MatrixPtr outputValue, IVectorPtr label)¶
-
virtual void
onPassEnd
()¶ One pass is finished.
-
Check Layers¶
EosIdCheckLayer¶
-
class
paddle::
EosIdCheckLayer
¶ A layer for checking EOS for each sample:
- output_id = (input_id == conf.eos_id)
The result is stored in output_.ids. It is used by recurrent layer group.
Inherits from paddle::Layer
Public Functions
-
EosIdCheckLayer
(const LayerConfig &config)¶
-
virtual bool
init
(const LayerMap &layerMap, const ParameterMap ¶meterMap)¶ Intialization. For example, adding input layers from layerMap and parameterMap.
-
virtual void
forward
(PassType passType)¶ Forward propagation. All inherited implementation should call Layer::foward() function.
-
virtual void
backward
(const UpdateCallback &callback)¶ Backward propagation. Should only be called after Layer::forward() function.