# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import argparse import re from api_base import BaseAPI class BackwardAPI(BaseAPI): def __init__(self, backward_item_yaml): super(BackwardAPI, self).__init__(backward_item_yaml) self.check_args(backward_item_yaml['forward']) self.no_need_buffer = self.parse_no_need_buffer(backward_item_yaml) def get_api_name(self, api_item_yaml): return api_item_yaml['backward_api'] def parse_forward_config(self, forward_config): # api_name (const Tensor& input, ... , int attr, ...) -> Tensor(out) result = re.search( r"(?P[a-z][a-z0-9_]+)\s*(?P\([^\)]+\))\s*->\s*(?P.+)", forward_config) api = result.group('api') _, outputs, _, = self.parse_output(self.api, result.group('outputs')) outputs = [item.split('@')[0] for item in outputs] fw_inputs, fw_attrs = self.parse_input_and_attr(api, result.group('args')) return api, fw_inputs, fw_attrs, outputs def parse_no_need_buffer(self, api_item_yaml): no_need_buffer = [] if 'no_need_buffer' in api_item_yaml: no_need_buffer = [ item.strip() for item in api_item_yaml['no_need_buffer'].split(',') ] return no_need_buffer def check_args(self, forward_config): # parse the forward and backward config _, fw_inputs, fw_attrs, fw_outputs = self.parse_forward_config( forward_config) # check the inputs of backward for input in self.inputs['names']: if input not in fw_inputs['names'] and input not in fw_outputs: if input.endswith('_grad'): original_name = input[:-5] assert original_name in fw_outputs, \ f"{self.api} : Input Tensor error: the input tensor({input}) of backward should be an input or output or grad of output in forward api. \ Please check the forward of {self.api} in yaml." # check the attributes of backward for attr in self.attrs['names']: assert (attr in fw_attrs['names'] and self.attrs['attr_info'][attr][0] == fw_attrs['attr_info'][attr][0]) or \ self.attrs['attr_info'][attr][1] is not None, \ f"{self.api} : Attribute error: The attribute({attr}) of backward isn't consistent with forward api or doesn't have default value. \ Please check the args of {self.api} in yaml." # check the output of backward assert len(self.outputs['types']) <= len(fw_inputs['names']), \ f"{self.api} : Output error: The number of outputs should be less then the number of inputs of forward api. \ Please check the output of {self.api} in yaml." def get_declare_args(self, inplace_flag=False): return self.get_define_args() def get_define_args(self, inplace_flag=False): out_type_map = { 'Tensor': 'Tensor*', 'std::vector': 'std::vector' } intputs_and_attrs = super(BackwardAPI, self).get_define_args() outs = [] for i, name in enumerate(self.outputs['names']): outs.append(out_type_map[self.outputs['types'][i]] + ' ' + name.split('@')[0]) result = intputs_and_attrs + ', ' + ", ".join(outs) return result def gene_return_code(self): return "" def gene_api_declaration(self): if not self.is_base_api: invoke_func_name = self.invoke.split('(')[0] if (not invoke_func_name.endswith("_grad")) and ( not invoke_func_name.endswith('_impl')): return "" api_func_name = self.get_api_func_name() api_declaration = f""" PADDLE_API void {api_func_name}({self.get_declare_args()}); """ return api_declaration def gene_kernel_backend_select(self): all_no_need_buffer = True for in_name in self.inputs['names']: if in_name not in self.no_need_buffer: all_no_need_buffer = False if all_no_need_buffer: return """ kernel_backend = ParseBackend(egr::Controller::Instance().GetExpectedPlace()); """ else: return super().gene_kernel_backend_select() def get_return_type(self, inplace_flag=False): return 'void' def gene_output(self, out_dtype_list, out_tensor_type_list=None, code_indent='', inplace_flag=False): kernel_output = [] output_names = [] output_create = "" if len(out_dtype_list) == 1: kernel_output.append('kernel_out') output_names.append('kernel_out') inplace_assign = " = " + self.inplace_map[self.outputs['names'][ 0]] if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][0] in self.inplace_map else "" output_create = "" set_out_func = 'SetKernelOutput' if out_tensor_type_list is None or out_tensor_type_list[ 0] == 'dense' else 'SetSelectedRowsKernelOutput' if out_dtype_list[0] == 'std::vector': assert self.outputs['out_size_expr'] is not None, \ f"{self.api}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api." output_create = output_create + f""" {code_indent} auto kernel_out = {set_out_func}(&{self.outputs['names'][0]});""" else: output_create = output_create + f""" {code_indent} auto kernel_out = {set_out_func}({self.outputs['names'][0]});""" elif len(out_dtype_list) > 1: output_create = "" for i, out_type_item in enumerate(out_dtype_list): kernel_output.append(f'kernel_out_{i}') output_names.append(f'kernel_out_{i}') set_out_func = 'SetKernelOutput' if out_tensor_type_list is None or out_tensor_type_list[ i] == 'dense' else 'SetSelectedRowsKernelOutput' if out_type_item == 'Tensor': if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][i] in self.inplace_map: output_create = output_create + f""" {code_indent} *{self.outputs['names'][i]} = {self.inplace_map[self.outputs['names'][i]]};""" output_create = output_create + f""" {code_indent} auto kernel_out_{i} = {set_out_func}({self.outputs['names'][i]});""" else: if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][i] in self.inplace_map: output_create = output_create + f""" {code_indent} *{self.outputs['names'][i]} = {self.inplace_map[self.outputs['names'][i]]};""" assert self.outputs['out_size_expr'][i] is not None, \ f"{self.api}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api." output_create = output_create + f""" {code_indent} auto kernel_out_{i} = {set_out_func}(&{self.outputs['names'][i]});""" else: raise ValueError( "{} : Output error: the output should not be empty.".format( self.api)) return kernel_output, output_names, output_create def gene_invoke_code(self, invoke_code, params_code): invoke_func_name = invoke_code.split('(')[0].strip() if invoke_func_name.endswith('_grad') or invoke_func_name.endswith( '_impl'): return f""" PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{ {invoke_code}; }}""" else: return "" def header_include(): return """ #include #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/int_array.h" #include "paddle/utils/optional.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include #include "glog/logging.h" #include "paddle/phi/api/lib/api_custom_impl.h" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/api/lib/data_transform.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/api/include/api.h" #include "paddle/phi/infermeta/backward.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/fluid/platform/profiler/supplement_tracing.h" DECLARE_bool(conv2d_disable_cudnn); """ def backward_api_namespace(): return (""" namespace paddle { namespace experimental { """, """ } // namespace experimental } // namespace paddle """) def generate_backward_api(backward_yaml_path, header_file_path, source_file_path): bw_apis = [] for each_api_yaml in backward_yaml_path: with open(each_api_yaml, 'r') as f: api_list = yaml.load(f, Loader=yaml.FullLoader) if api_list: bw_apis.extend(api_list) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = backward_api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/phi/api/backward/backward_api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for bw_api in bw_apis: bw_api = BackwardAPI(bw_api) header_file.write(bw_api.gene_api_declaration()) source_file.write(bw_api.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ backward API files') parser.add_argument('--backward_yaml_path', help='path to backward yaml file', nargs='+', default='paddle/phi/api/yaml/backward.yaml') parser.add_argument('--backward_header_path', help='output of generated backward header code file', default='paddle/phi/api/backward/backward_api.h') parser.add_argument('--backward_source_path', help='output of generated backward source code file', default='paddle/phi/api/lib/backward_api.cc') options = parser.parse_args() backward_yaml_path = options.backward_yaml_path header_file_path = options.backward_header_path source_file_path = options.backward_source_path generate_backward_api(backward_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()