# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle import fluid from .meta_optimizer_base import MetaOptimizerBase from paddle.fluid import core import subprocess import re import os import platform from ..base.private_helper_function import wait_server_ready __all__ = [] class ParameterServerOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super().__init__(optimizer) self.inner_opt = optimizer # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [] def _set_basic_info( self, loss, role_maker, user_defined_optimizer, user_defined_strategy ): super()._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy ) # self.micro_batch_size = user_defined_strategy.pipeline_configs[ # 'micro_batch_size'] self.num_microbatches = user_defined_strategy.pipeline_configs[ 'accumulate_steps' ] def _is_graph_out(self): return False def _can_apply(self): if self.role_maker._is_collective: return False k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] return True if k_steps >= 0 else False def get_dist_env(self): trainer_id = int(os.getenv('PADDLE_TRAINER_ID', '0')) trainer_endpoints = '' current_endpoint = '' num_trainers = 0 if os.getenv('PADDLE_TRAINER_ENDPOINTS'): trainer_endpoints = os.getenv('PADDLE_TRAINER_ENDPOINTS') current_endpoint = trainer_endpoints.split(',')[trainer_id] num_trainers = len(trainer_endpoints.split(',')) return { 'trainer_id': trainer_id, 'num_trainers': num_trainers, 'current_endpoint': current_endpoint, 'trainer_endpoints': trainer_endpoints, } def _get_distributed_strategy(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import ( StrategyFactory, ) k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] strategy = None if not self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if self.user_defined_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def _build_trainer_programs(self, compiled_config): from paddle.fluid.incubate.fleet.parameter_server.ir import ( trainer_pass as worker, ) _main = compiled_config.origin_main_program.clone() _startup = compiled_config.origin_startup_program.clone() use_ps_gpu = self.user_defined_strategy.a_sync_configs["use_ps_gpu"] if not compiled_config.is_geo_mode(): from paddle.fluid.incubate.fleet.parameter_server.ir.public import ( _add_lr_decay_table_pass, ) _add_lr_decay_table_pass( _main, compiled_config, self.user_defined_strategy.a_sync_configs["lr_decay_steps"], ) # for main program _main = worker.distributed_ops_pass( _main, compiled_config, use_ps_gpu ) if not use_ps_gpu: _main = worker.delete_optimizer_pass(_main, compiled_config) _main = worker.append_send_ops_pass(_main, compiled_config) _startup = worker.delete_extra_optimizes_pass( _startup, compiled_config ) # for startup program _startup = worker.fake_init_ops_pass(_startup, compiled_config) if use_ps_gpu: _main = worker.ps_gpu_pass(_main) from paddle.fluid.transpiler.collective import ( SingleProcessMultiThread, ) t = SingleProcessMultiThread() env = self.get_dist_env() t.transpile( startup_program=_startup, main_program=_main, rank=env["trainer_id"], endpoints=env["trainer_endpoints"], current_endpoint=env['current_endpoint'], wait_port=False, ) compiled_config.set_origin_ps_main_program(_main) compiled_config.set_origin_ps_startup_program(_startup) # for heter program if self.role_maker._is_heter_parameter_server_mode: from paddle.fluid.incubate.fleet.parameter_server.ir import ( heter_trainer_pass as heter_worker, ) if self.role_maker._is_heter_worker(): # for heter worker stage_id = self.role_maker._get_stage_id() device = self.role_maker._heter_device_type().lower() _main = heter_worker.split_heter_worker_ops_pass( _main, compiled_config, stage_id, device ) else: # for default worker _main = heter_worker.split_trainer_ops_pass( _main, compiled_config ) else: _main = worker.append_send_ops_pass(_main, compiled_config) _startup = _startup compiled_config.set_origin_ps_main_program(_main) compiled_config.set_origin_ps_startup_program(_startup) launch_barrier = self.user_defined_strategy.a_sync_configs[ "launch_barrier" ] launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1")) if launch_barrier and launch_barrier_flag: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) # for ps-heter mode, wait heter worker ready # if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( # ): # wait_server_ready(self.role_maker._get_heter_worker_endpoints()) return _main, _startup def _build_pserver_programs(self, compiled_config): _main = fluid.Program() _startup = fluid.Program() from paddle.fluid.incubate.fleet.parameter_server.ir import ( pserver_pass as server, ) if not compiled_config.is_geo_mode(): from paddle.fluid.incubate.fleet.parameter_server.ir.public import ( _get_optimize_ops, ) is_sgd_adam = False main_program = compiled_config.get_origin_main_program() ops = _get_optimize_ops(main_program) if len(ops) == 0: return _main, _startup from paddle.fluid.incubate.fleet.parameter_server.ir.public import ( _add_lr_decay_table_pass, ) lr_decay_steps = self.user_defined_strategy.a_sync_configs[ "lr_decay_steps" ] _add_lr_decay_table_pass( main_program, compiled_config, lr_decay_steps ) for op in ops: if op.type in ["sgd", "adam"]: is_sgd_adam = True break if is_sgd_adam: return _main, _startup _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_optimizer_pass(_main, compiled_config) _main = server.large_scale_sparse_pass( _main, _main, compiled_config, False ) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config ) _startup = server.large_scale_sparse_pass( _startup, _main, compiled_config, True ) if not compiled_config.is_sync_mode(): _main = server.delete_unused_in_main_pass( _main, compiled_config ) _startup = server.delete_unused_in_startup_pass( _startup, _main, compiled_config ) else: _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_geo_optimizer_pass(_main, compiled_config) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config ) _startup = server.delete_unused_in_startup_pass( _startup, _main, compiled_config ) return _main, _startup def _can_apply_geo(self, dist_strategy, program): def get_sys_free_mem(): plat = platform.system() if platform.system() == "Darwin": vm = subprocess.Popen( ['vm_stat'], stdout=subprocess.PIPE ).communicate()[0] # Process vm_stat vmLines = vm.split('\n') sep = re.compile(r':[\s]+') vmStats = {} for row in range(1, len(vmLines) - 2): rowText = vmLines[row].strip() rowElements = sep.split(rowText) vmStats[(rowElements[0])] = ( int(rowElements[1].strip(r'\.')) * 4096 ) return vmStats["Pages free"] elif platform.system() == "Linux": mems = {} with open('/proc/meminfo', 'rb') as f: for line in f: fields = line.split() mems[fields[0]] = int(fields[1]) * 1024 free = mems[b'MemFree:'] return free else: raise ValueError( "%s platform is unsupported is parameter server optimizer" % (platform.system()) ) if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer): return False free = get_sys_free_mem() from paddle.fluid.incubate.fleet.parameter_server.ir import ( vars_metatools, ) processed_var_names = set(["@EMPTY@"]) param_memory_size = 0 for varname in program.global_block().vars: var = program.global_block().vars[varname] if ( not var.persistable or var.desc.type() != core.VarDesc.VarType.LOD_TENSOR ): continue param = vars_metatools.create_var_struct(var) param_memory_size += param.m_size processed_var_names.add(varname) upper_mem_use = param_memory_size * 5.0 program_tmp_vars = dict() eval_batch_size = 1024 for op in program.global_block().ops: for var_name in op.output_arg_names: if var_name in processed_var_names: continue processed_var_names.add(var_name) var = program.global_block().vars[var_name] if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR: continue data_count = 1 neg_dim_count = 0 for x in var.shape: if x < 0: if neg_dim_count >= 1: raise ValueError( "Var %s has more than one negative dim." % (var_name) ) neg_dim_count += 1 data_count *= -x else: data_count *= x program_tmp_vars[var_name] = ( data_count, neg_dim_count, vars_metatools.dtype_to_size[var.dtype], ) for varname in program_tmp_vars: data_count, neg_dim_count, type_size = program_tmp_vars[varname] if neg_dim_count == 1: data_count *= eval_batch_size var_memory = data_count * type_size upper_mem_use += var_memory if upper_mem_use < free: return True else: return False def minimize_impl( self, loss, startup_program=None, parameter_list=None, no_grad_set=None ): self.inner_opt.minimize( loss, startup_program, parameter_list, no_grad_set ) strategy = self._get_distributed_strategy() _origin_main_program = loss.block.program _origin_startup_program = startup_program from paddle.fluid.incubate.fleet.parameter_server.ir import ( public as public, ) compiled_config = public.CompileTimeStrategy( _origin_main_program, _origin_startup_program, strategy, self.role_maker, ) compiled_config.strategy = strategy if self.role_maker._is_worker() or self.role_maker._is_heter_worker(): main_program, startup_program = self._build_trainer_programs( compiled_config ) if self.role_maker._is_heter_parameter_server_mode: _origin_startup_program._heter_pipeline_opt = { "startup_program": startup_program, "pipeline_stage": int(self.role_maker._get_stage_id()) - 1, "heter_place": self.role_maker._heter_device(), } loss.block.program._heter_pipeline_opt = { "trainer": "HeterPipelineTrainer", "device_worker": "HeterSection", "trainers": self.role_maker._get_stage_trainers(), ## trainer num in each stage "trainer_id": int(self.role_maker._role_id()), "pipeline_stage": int(self.role_maker._get_stage_id()) - 1, "num_pipeline_stages": int( self.role_maker._get_num_stage() ), "section_program": main_program, "num_microbatches": self.num_microbatches, "heter_place": self.role_maker._heter_device(), } else: loss.block.program = main_program fluid.framework.switch_startup_program(startup_program) elif self.role_maker._is_server(): main_program, startup_program = self._build_pserver_programs( compiled_config ) loss.block.program = main_program fluid.framework.switch_startup_program(startup_program) return None, None def _disable_strategy(self, dist_strategy): # if self.role_maker._is_heter_parameter_server_mode: # dist_strategy.pipeline = False # dist_strategy.pipeline_configs = { # "micro_batch_size": 1, # "accumulate_steps": 1, # } dist_strategy.a_sync = False a_sync_configs = dist_strategy.a_sync_configs a_sync_configs["k_steps"] = -1 dist_strategy.a_sync_configs = a_sync_configs def _enable_strategy(self, dist_strategy, context): # if self.role_maker._is_heter_parameter_server_mode: # dist_strategy.pipeline = True # dist_strategy.pipeline_configs = { # "micro_batch_size": 1, # "accumulate_steps": 1, # } a_sync_configs = dist_strategy.a_sync_configs if a_sync_configs["k_steps"] >= 0: return dist_strategy.a_sync = True a_sync_configs = dist_strategy.a_sync_configs is_geo = self._can_apply_geo( dist_strategy, context["origin_main_program"] ) if is_geo: a_sync_configs["k_steps"] = 800 else: a_sync_configs["k_steps"] = 0 dist_strategy.a_sync_configs = a_sync_configs