/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { template class UnsqueezeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto &axes = context.Attr>("axes"); auto *in = context.Input("X"); auto *out = context.Output("Out"); auto x_dims = in->dims(); auto out_dims = GetOutputShape(axes, x_dims); out->mutable_data(context.GetPlace(), in->type()); framework::TensorCopy( *in, context.GetPlace(), context.template device_context(), out); out->Resize(out_dims); } static framework::DDim GetOutputShape(const std::vector unsqz_dims, const framework::DDim &in_dims) { int output_size = in_dims.size() + static_cast(unsqz_dims.size()); int cur_output_size = in_dims.size(); std::vector output_shape(output_size, 0); // Validity Check: rank range. PADDLE_ENFORCE_LE(output_size, 6, "The output tensor's rank should be less than 6."); for (int axis : unsqz_dims) { int cur = axis < 0 ? axis + cur_output_size + 1 : axis; // Vaildity Check: the axis bound PADDLE_ENFORCE_GE(cur, 0); PADDLE_ENFORCE_LE(cur, cur_output_size); // Move old axis, and insert new axis for (int i = cur_output_size; i >= cur; --i) { if (output_shape[i] == 1) { // Move axis output_shape[i + 1] = 1; output_shape[i] = 0; } } output_shape[cur] = 1; // Add the output size. cur_output_size++; } // Make output shape for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) { if (output_shape[out_idx] == 0) { output_shape[out_idx] = in_dims[in_idx++]; } } return framework::make_ddim(output_shape); } }; template class UnsqueezeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *d_out = ctx.Input(framework::GradVarName("Out")); auto *d_x = ctx.Output(framework::GradVarName("X")); auto in_dims = ctx.Input("X")->dims(); d_x->mutable_data(ctx.GetPlace(), d_out->type()); framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x); d_x->Resize(in_dims); } }; template class Unsqueeze2Kernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *out = context.Output("Out"); auto *in = context.Input("X"); auto &axes = context.Attr>("axes"); auto x_dims = in->dims(); auto out_dims = UnsqueezeKernel::GetOutputShape(axes, x_dims); out->mutable_data(context.GetPlace(), in->type()); framework::TensorCopy( *in, context.GetPlace(), context.template device_context(), out); out->Resize(out_dims); } }; template class Unsqueeze2GradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *d_out = ctx.Input(framework::GradVarName("Out")); auto *d_x = ctx.Output(framework::GradVarName("X")); // auto in_dims = d_x->dims(); auto xshape_dims = ctx.Input("XShape")->dims(); auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); d_x->mutable_data(ctx.GetPlace(), d_out->type()); framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x); d_x->Resize(x_dims); } }; } // namespace operators } // namespace paddle