// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h" #include "paddle/fluid/eager/eager_layout_transformer.h" #include "paddle/fluid/imperative/layout_autotune.h" #include "paddle/phi/backends/gpu/gpu_info.h" namespace egr { inline bool NeedTransLayout( const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, const paddle::experimental::DataLayout& layout) { for (size_t i = 0; i < tensors_vector.size(); i++) { for (size_t idx = 0; idx < tensors_vector[0].size(); idx++) { if (layout != tensors_vector[i][idx].layout()) { return true; } } } return false; } inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector) { // For agnostic op like add, relu, exp auto first_layout = tensors_vector[0][0].layout(); auto desired_layout = DesiredLayout(); bool is_started = !(desired_layout == paddle::experimental::DataLayout::UNDEFINED); if (is_started && NeedTransLayout(tensors_vector, first_layout)) { bool need_trans_back = false; for (size_t i = 0; i < tensors_vector.size(); i++) { for (size_t idx = 0; idx < tensors_vector[0].size(); idx++) { if (4 != tensors_vector[i][idx].shape().size()) { need_trans_back = true; } } } auto final_layout = need_trans_back ? DefaultLayout() : desired_layout; VLOG(4) << op_name << "'s has different layout, need trans to " << final_layout; return std::make_shared( op_name, tensors_vector, final_layout); } return std::make_shared( op_name, tensors_vector, first_layout); } template inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, T* attr) { // For lightly op like reduce if (!(DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED)) { VLOG(4) << "LayoutAutotune was unstarted. Current op :" << op_name; return std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); } return std::make_shared(op_name); } template inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, T1* axis, T2* keep_dim) { // For lightly op like argmax return EagerLayoutAutotune(op_name, tensors_vector, axis); } template <> inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, std::string* attr) { // Heavily op with (string) data_format, data_layout auto transposer = std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); if (DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED) { // Layout autotune only supports model with convolutional layers if (op_name != "conv2d") { VLOG(4) << "LayoutAutotune was unstarted. Current op :" << op_name; return transposer; } else { auto data_type = tensors_vector[0][0].dtype(); bool is_tune_fp32 = (data_type == paddle::experimental::DataType::FLOAT32) && (*attr == "NHWC"); bool is_tune_fp16 = (data_type == paddle::experimental::DataType::FLOAT16) && (*attr == "NCHW"); VLOG(4) << "LayoutAutoTune assert with dtype and layout, Current op : " << op_name; if (is_tune_fp32) { paddle::imperative::LayoutAutoTune::Instance().SetDesiredLayout( paddle::experimental::DataLayout::NCHW); paddle::imperative::LayoutAutoTune::Instance().SetDefaultLayout( paddle::experimental::DataLayout::NHWC); } else if (is_tune_fp16) { paddle::imperative::LayoutAutoTune::Instance().SetDesiredLayout( paddle::experimental::DataLayout::NHWC); paddle::imperative::LayoutAutoTune::Instance().SetDefaultLayout( paddle::experimental::DataLayout::NCHW); } else { VLOG(4) << "DisableLayoutAutoTune accoding to Conv op" << " dtype : " << data_type << " format : " << (*attr); egr::Controller::Instance().DisableLayoutAutoTune(); return transposer; } VLOG(4) << "LayoutAutoTune from " << *attr << " to " << DesiredLayout(); } } if (paddle::imperative::LayoutAutoTune::Instance().IsHeavilyLayoutSensitive( op_name)) { return std::make_shared(op_name, attr); } return std::make_shared(op_name); } template <> inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, std::vector* attr) { // lightly transpose if (DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED) { VLOG(4) << "LayoutAutotune was unstarted. Current op :" << op_name; return std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); } if (op_name == "transpose2" && (tensors_vector[0][0].layout() == DesiredLayout())) { auto trans = std::make_shared(op_name); trans->SetAttr(attr, tensors_vector[0][0].layout() == paddle::experimental::DataLayout::NHWC); return trans; } return std::make_shared(op_name); } // lightly int argmax template <> inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, paddle::experimental::Scalar* axis, bool* keep_dim) { if (DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED) { VLOG(4) << "LayoutAutotune was unstarted. Current op :" << op_name; return std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); } if (op_name == "argmax" && (tensors_vector[0][0].layout() == DesiredLayout()) && (*keep_dim)) { std::shared_ptr argmax_transform = nullptr; argmax_transform = std::make_shared(op_name); argmax_transform->SetAttr(axis, tensors_vector[0][0].layout() == paddle::experimental::DataLayout::NHWC); return argmax_transform; } return std::make_shared(op_name); } template <> inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, int* start_axis, int* stop_axis) { if (DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED) { VLOG(4) << "Optimze Layout was not started" << op_name; return std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); } bool no_tranpose = tensors_vector[0][0].layout() == DesiredLayout(); bool is_valid = ((*start_axis) == 1 && (*stop_axis) == 3); if (op_name == "flatten" || op_name == "flatten_contiguous_range") { if (no_tranpose && is_valid) { return std::make_shared(op_name); } } return std::make_shared(op_name); } template <> inline std::shared_ptr EagerLayoutAutotune( const std::string& op_name, const paddle::small_vector, kSlotSmallVectorSize>& tensors_vector, paddle::experimental::Scalar* axis) { if (DesiredLayout() == paddle::experimental::DataLayout::UNDEFINED) { VLOG(4) << "Optimze Layout was not started" << op_name; return std::make_shared( op_name, tensors_vector, tensors_vector[0][0].layout()); } auto desired_layout = DesiredLayout(); if (NeedTransLayout(tensors_vector, desired_layout)) { VLOG(4) << op_name << "'s has different layout"; return std::make_shared(op_name); } if (op_name == "Concat") { if (desired_layout == tensors_vector[0][0].layout() && tensors_vector[0][0].shape().size() == 4) { auto trans = std::make_shared(op_name); trans->SetAttr(axis, desired_layout); return trans; } } return std::make_shared(op_name); } } // namespace egr