# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle import _C_ops, _legacy_C_ops from paddle.tensor.math import _add_with_axis from paddle.utils import convert_to_list from ..fluid import core from ..fluid.data_feeder import check_type, check_variable_and_dtype from ..fluid.framework import Variable, in_dygraph_mode from ..fluid.layer_helper import LayerHelper from ..framework import _current_expected_place from ..nn import BatchNorm2D, Conv2D, Layer, ReLU, Sequential from ..nn.initializer import Normal __all__ = [ # noqa 'yolo_loss', 'yolo_box', 'prior_box', 'box_coder', 'deform_conv2d', 'DeformConv2D', 'distribute_fpn_proposals', 'generate_proposals', 'read_file', 'decode_jpeg', 'roi_pool', 'RoIPool', 'psroi_pool', 'PSRoIPool', 'roi_align', 'RoIAlign', 'nms', 'matrix_nms', ] def yolo_loss( x, gt_box, gt_label, anchors, anchor_mask, class_num, ignore_thresh, downsample_ratio, gt_score=None, use_label_smooth=True, name=None, scale_x_y=1.0, ): r""" This operator generates YOLOv3 loss based on given predict result and ground truth boxes. The output of previous network is in shape [N, C, H, W], while H and W should be the same, H and W specify the grid size, each grid point predict given number bounding boxes, this given number, which following will be represented as S, is specified by the number of anchor clusters in each scale. In the second dimension(the channel dimension), C should be equal to S * (class_num + 5), class_num is the object category number of source dataset(such as 80 in coco dataset), so in the second(channel) dimension, apart from 4 box location coordinates x, y, w, h, also includes confidence score of the box and class one-hot key of each anchor box. Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions should be as follows: $$ b_x = \\sigma(t_x) + c_x $$ $$ b_y = \\sigma(t_y) + c_y $$ $$ b_w = p_w e^{t_w} $$ $$ b_h = p_h e^{t_h} $$ In the equation above, :math:`c_x, c_y` is the left top corner of current grid and :math:`p_w, p_h` is specified by anchors. As for confidence score, it is the logistic regression value of IoU between anchor boxes and ground truth boxes, the score of the anchor box which has the max IoU should be 1, and if the anchor box has IoU bigger than ignore thresh, the confidence score loss of this anchor box will be ignored. Therefore, the YOLOv3 loss consists of three major parts: box location loss, objectness loss and classification loss. The L1 loss is used for box coordinates (w, h), sigmoid cross entropy loss is used for box coordinates (x, y), objectness loss and classification loss. Each groud truth box finds a best matching anchor box in all anchors. Prediction of this anchor box will incur all three parts of losses, and prediction of anchor boxes with no GT box matched will only incur objectness loss. In order to trade off box coordinate losses between big boxes and small boxes, box coordinate losses will be mutiplied by scale weight, which is calculated as follows. $$ weight_{box} = 2.0 - t_w * t_h $$ Final loss will be represented as follows. $$ loss = (loss_{xy} + loss_{wh}) * weight_{box} + loss_{conf} + loss_{class} $$ While :attr:`use_label_smooth` is set to be :attr:`True`, the classification target will be smoothed when calculating classification loss, target of positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of negetive samples will be smoothed to :math:`1.0 / class\_num`. While :attr:`gt_score` is given, which means the mixup score of ground truth boxes, all losses incured by a ground truth box will be multiplied by its mixup score. Args: x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D tensor with shape of [N, C, H, W]. H and W should be same, and the second dimension(C) stores box locations, confidence score and classification one-hot keys of each anchor box. The data type is float32 or float64. gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4], in the third dimension, x, y, w, h should be stored. x,y is the center coordinate of boxes, w, h are the width and height, x, y, w, h should be divided by input image height to scale to [0, 1]. N is the batch number and B is the max box number in an image.The data type is float32 or float64. gt_label (Tensor): class id of ground truth boxes, should be in shape of [N, B].The data type is int32. anchors (list|tuple): The anchor width and height, it will be parsed pair by pair. anchor_mask (list|tuple): The mask index of anchors used in current YOLOv3 loss calculation. class_num (int): The number of classes. ignore_thresh (float): The ignore threshold to ignore confidence loss. downsample_ratio (int): The downsample ratio from network input to YOLOv3 loss input, so 32, 16, 8 should be set for the first, second, and thrid YOLOv3 loss operators. gt_score (Tensor, optional): mixup score of ground truth boxes, should be in shape of [N, B]. Default None. use_label_smooth (bool, optional): Whether to use label smooth. Default True. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` scale_x_y (float, optional): Scale the center point of decoded bounding box. Default 1.0. Returns: Tensor: A 1-D tensor with shape [N], the value of yolov3 loss Examples: .. code-block:: python import paddle x = paddle.rand([2, 14, 8, 8]).astype('float32') gt_box = paddle.rand([2, 10, 4]).astype('float32') gt_label = paddle.rand([2, 10]).astype('int32') loss = paddle.vision.ops.yolo_loss(x, gt_box=gt_box, gt_label=gt_label, anchors=[10, 13, 16, 30], anchor_mask=[0, 1], class_num=2, ignore_thresh=0.7, downsample_ratio=8, use_label_smooth=True, scale_x_y=1.) """ if in_dygraph_mode(): loss = _C_ops.yolo_loss( x, gt_box, gt_label, gt_score, anchors, anchor_mask, class_num, ignore_thresh, downsample_ratio, use_label_smooth, scale_x_y, ) return loss else: helper = LayerHelper('yolov3_loss', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss') check_variable_and_dtype( gt_box, 'gt_box', ['float32', 'float64'], 'yolo_loss' ) check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss') check_type(anchors, 'anchors', (list, tuple), 'yolo_loss') check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss') check_type(class_num, 'class_num', int, 'yolo_loss') check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss') check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss') loss = helper.create_variable_for_type_inference(dtype=x.dtype) objectness_mask = helper.create_variable_for_type_inference( dtype='int32' ) gt_match_mask = helper.create_variable_for_type_inference(dtype='int32') inputs = { "X": x, "GTBox": gt_box, "GTLabel": gt_label, } if gt_score is not None: inputs["GTScore"] = gt_score attrs = { "anchors": anchors, "anchor_mask": anchor_mask, "class_num": class_num, "ignore_thresh": ignore_thresh, "downsample_ratio": downsample_ratio, "use_label_smooth": use_label_smooth, "scale_x_y": scale_x_y, } helper.append_op( type='yolov3_loss', inputs=inputs, outputs={ 'Loss': loss, 'ObjectnessMask': objectness_mask, 'GTMatchMask': gt_match_mask, }, attrs=attrs, ) return loss def yolo_box( x, img_size, anchors, class_num, conf_thresh, downsample_ratio, clip_bbox=True, name=None, scale_x_y=1.0, iou_aware=False, iou_aware_factor=0.5, ): r""" This operator generates YOLO detection boxes from output of YOLOv3 network. The output of previous network is in shape [N, C, H, W], while H and W should be the same, H and W specify the grid size, each grid point predict given number boxes, this given number, which following will be represented as S, is specified by the number of anchors. In the second dimension(the channel dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false, otherwise C should be equal to S * (6 + class_num). class_num is the object category number of source dataset(such as 80 in coco dataset), so the second(channel) dimension, apart from 4 box location coordinates x, y, w, h, also includes confidence score of the box and class one-hot key of each anchor box. Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions should be as follows: $$ b_x = \\sigma(t_x) + c_x $$ $$ b_y = \\sigma(t_y) + c_y $$ $$ b_w = p_w e^{t_w} $$ $$ b_h = p_h e^{t_h} $$ in the equation above, :math:`c_x, c_y` is the left top corner of current grid and :math:`p_w, p_h` is specified by anchors. The logistic regression value of the 5th channel of each anchor prediction boxes represents the confidence score of each prediction box, and the logistic regression value of the last :attr:`class_num` channels of each anchor prediction boxes represents the classifcation scores. Boxes with confidence scores less than :attr:`conf_thresh` should be ignored, and box final scores is the product of confidence scores and classification scores. $$ score_{pred} = score_{conf} * score_{class} $$ Args: x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W]. The second dimension(C) stores box locations, confidence score and classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network. The data type is float32 or float64. img_size (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2]. This tensor holds height and width of each input image used for resizing output box in input image scale. The data type is int32. anchors (list|tuple): The anchor width and height, it will be parsed pair by pair. class_num (int): The number of classes. conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores under threshold should be ignored. downsample_ratio (int): The downsample ratio from network input to :attr:`yolo_box` operator input, so 32, 16, 8 should be set for the first, second, and thrid :attr:`yolo_box` layer. clip_bbox (bool, optional): Whether clip output bonding box in :attr:`img_size` boundary. Default true. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. scale_x_y (float, optional): Scale the center point of decoded bounding box. Default 1.0 iou_aware (bool, optional): Whether use iou aware. Default false. iou_aware_factor (float, optional): iou aware factor. Default 0.5. Returns: Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification scores of boxes. Examples: .. code-block:: python import paddle x = paddle.rand([2, 14, 8, 8]).astype('float32') img_size = paddle.ones((2, 2)).astype('int32') boxes, scores = paddle.vision.ops.yolo_box(x, img_size=img_size, anchors=[10, 13, 16, 30], class_num=2, conf_thresh=0.01, downsample_ratio=8, clip_bbox=True, scale_x_y=1.) """ if in_dygraph_mode(): boxes, scores = _C_ops.yolo_box( x, img_size, anchors, class_num, conf_thresh, downsample_ratio, clip_bbox, scale_x_y, iou_aware, iou_aware_factor, ) return boxes, scores else: helper = LayerHelper('yolo_box', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box') check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box') check_type(anchors, 'anchors', (list, tuple), 'yolo_box') check_type(conf_thresh, 'conf_thresh', float, 'yolo_box') boxes = helper.create_variable_for_type_inference(dtype=x.dtype) scores = helper.create_variable_for_type_inference(dtype=x.dtype) attrs = { "anchors": anchors, "class_num": class_num, "conf_thresh": conf_thresh, "downsample_ratio": downsample_ratio, "clip_bbox": clip_bbox, "scale_x_y": scale_x_y, "iou_aware": iou_aware, "iou_aware_factor": iou_aware_factor, } helper.append_op( type='yolo_box', inputs={ "X": x, "ImgSize": img_size, }, outputs={ 'Boxes': boxes, 'Scores': scores, }, attrs=attrs, ) return boxes, scores def prior_box( input, image, min_sizes, max_sizes=None, aspect_ratios=[1.0], variance=[0.1, 0.1, 0.2, 0.2], flip=False, clip=False, steps=[0.0, 0.0], offset=0.5, min_max_aspect_ratios_order=False, name=None, ): r""" This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm. Each position of the input produce N prior boxes, N is determined by the count of min_sizes, max_sizes and aspect_ratios, The size of the box is in range(min_size, max_size) interval, which is generated in sequence according to the aspect_ratios. Args: input (Tensor): 4-D tensor(NCHW), the data type should be float32 or float64. image (Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64. min_sizes (list|tuple|float): the min sizes of generated prior boxes. max_sizes (list|tuple|None, optional): the max sizes of generated prior boxes. Default: None, means [] and will not be used. aspect_ratios (list|tuple|float, optional): the aspect ratios of generated prior boxes. Default: [1.0]. variance (list|tuple, optional): the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. flip (bool): Whether to flip aspect ratios. Default:False. clip (bool): Whether to clip out-of-boundary boxes. Default: False. steps (list|tuple, optional): Prior boxes steps across width and height, If steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across height or weight of the input will be automatically calculated. Default: [0., 0.] offset (float, optional)): Prior boxes center offset. Default: 0.5 min_max_aspect_ratios_order (bool, optional): If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the final detection results. Default: False. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: the output prior boxes and the expanded variances of PriorBox. The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4], num_priors is the total box count of each position of input. The expanded variances is a 4-D tensor, same shape as the prior boxes. Examples: .. code-block:: python import paddle input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32) image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32) box, var = paddle.vision.ops.prior_box( input=input, image=image, min_sizes=[2.0, 4.0], clip=True, flip=True) """ def _is_list_or_tuple_(data): return isinstance(data, (list, tuple)) if not _is_list_or_tuple_(min_sizes): min_sizes = [min_sizes] if not _is_list_or_tuple_(aspect_ratios): aspect_ratios = [aspect_ratios] if not _is_list_or_tuple_(steps): steps = [steps] if not len(steps) == 2: raise ValueError('steps should be (step_w, step_h)') min_sizes = list(map(float, min_sizes)) aspect_ratios = list(map(float, aspect_ratios)) steps = list(map(float, steps)) cur_max_sizes = None if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0: if not _is_list_or_tuple_(max_sizes): max_sizes = [max_sizes] cur_max_sizes = max_sizes if in_dygraph_mode(): step_w, step_h = steps if max_sizes is None: max_sizes = [] box, var = _C_ops.prior_box( input, image, min_sizes, max_sizes, aspect_ratios, variance, flip, clip, step_w, step_h, offset, min_max_aspect_ratios_order, ) return box, var else: helper = LayerHelper("prior_box", **locals()) dtype = helper.input_dtype() check_variable_and_dtype( input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box' ) attrs = { 'min_sizes': min_sizes, 'aspect_ratios': aspect_ratios, 'variances': variance, 'flip': flip, 'clip': clip, 'step_w': steps[0], 'step_h': steps[1], 'offset': offset, 'min_max_aspect_ratios_order': min_max_aspect_ratios_order, } if cur_max_sizes is not None: attrs['max_sizes'] = cur_max_sizes box = helper.create_variable_for_type_inference(dtype) var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prior_box", inputs={"Input": input, "Image": image}, outputs={"Boxes": box, "Variances": var}, attrs=attrs, ) box.stop_gradient = True var.stop_gradient = True return box, var def box_coder( prior_box, prior_box_var, target_box, code_type="encode_center_size", box_normalized=True, axis=0, name=None, ): r""" Encode/Decode the target bounding box with the priorbox information. The Encoding schema described below: .. math:: ox &= (tx - px) / pw / pxv oy &= (ty - py) / ph / pyv ow &= log(abs(tw / pw)) / pwv oh &= log(abs(th / ph)) / phv The Decoding schema described below: .. math:: ox &= (pw * pxv * tx * + px) - tw / 2 oy &= (ph * pyv * ty * + py) - th / 2 ow &= exp(pwv * tw) * pw + tw / 2 oh &= exp(phv * th) * ph + th / 2 where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the encoded/decoded coordinates, width and height. During Box Decoding, two modes for broadcast are supported. Say target box has shape [N, M, 4], and the shape of prior box can be [N, 4] or [M, 4]. Then prior box will broadcast to target box along the assigned axis. Args: prior_box (Tensor): Box list prior_box is a 2-D Tensor with shape [M, 4] holds M boxes and data type is float32 or float64. Each box is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate of the anchor box, if the input is image feature map, they are close to the origin of the coordinate system. [xmax, ymax] is the right bottom coordinate of the anchor box. prior_box_var (List|Tensor|None): prior_box_var supports three types of input. One is Tensor with shape [M, 4] which holds M group and data type is float32 or float64. The second is list consist of 4 elements shared by all boxes and data type is float32 or float64. Other is None and not involved in calculation. target_box (Tensor): This input can be a 2-D LoDTensor with shape [N, 4] when code_type is 'encode_center_size'. This input also can be a 3-D Tensor with shape [N, M, 4] when code_type is 'decode_center_size'. Each box is represented as [xmin, ymin, xmax, ymax]. The data type is float32 or float64. code_type (str, optional): The code type used with the target box. It can be `encode_center_size` or `decode_center_size`. `encode_center_size` by default. box_normalized (bool, optional): Whether treat the priorbox as a normalized box. Set true by default. axis (int, optional): Which axis in PriorBox to broadcast for box decode, for example, if axis is 0 and TargetBox has shape [N, M, 4] and PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4] for decoding. It is only valid when code type is `decode_center_size`. Set 0 by default. name (str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: output boxes, when code_type is 'encode_center_size', the output tensor of box_coder_op with shape [N, M, 4] representing the result of N target boxes encoded with M Prior boxes and variances. When code_type is 'decode_center_size', N represents the batch size and M represents the number of decoded boxes. Examples: .. code-block:: python import paddle # For encode prior_box_encode = paddle.rand((80, 4), dtype=paddle.float32) prior_box_var_encode = paddle.rand((80, 4), dtype=paddle.float32) target_box_encode = paddle.rand((20, 4), dtype=paddle.float32) output_encode = paddle.vision.ops.box_coder( prior_box=prior_box_encode, prior_box_var=prior_box_var_encode, target_box=target_box_encode, code_type="encode_center_size") # For decode prior_box_decode = paddle.rand((80, 4), dtype=paddle.float32) prior_box_var_decode = paddle.rand((80, 4), dtype=paddle.float32) target_box_decode = paddle.rand((20, 80, 4), dtype=paddle.float32) output_decode = paddle.vision.ops.box_coder( prior_box=prior_box_decode, prior_box_var=prior_box_var_decode, target_box=target_box_decode, code_type="decode_center_size", box_normalized=False) """ if in_dygraph_mode(): if isinstance(prior_box_var, core.eager.Tensor): output_box = _C_ops.box_coder( prior_box, prior_box_var, target_box, code_type, box_normalized, axis, [], ) elif isinstance(prior_box_var, list): output_box = _C_ops.box_coder( prior_box, None, target_box, code_type, box_normalized, axis, prior_box_var, ) else: raise TypeError("Input prior_box_var must be Variable or list") return output_box else: check_variable_and_dtype( prior_box, 'prior_box', ['float32', 'float64'], 'box_coder' ) check_variable_and_dtype( target_box, 'target_box', ['float32', 'float64'], 'box_coder' ) helper = LayerHelper("box_coder", **locals()) output_box = helper.create_variable_for_type_inference( dtype=prior_box.dtype ) inputs = {"PriorBox": prior_box, "TargetBox": target_box} attrs = { "code_type": code_type, "box_normalized": box_normalized, "axis": axis, } if isinstance(prior_box_var, Variable): inputs['PriorBoxVar'] = prior_box_var elif isinstance(prior_box_var, list): attrs['variance'] = prior_box_var else: raise TypeError("Input prior_box_var must be Variable or list") helper.append_op( type="box_coder", inputs=inputs, attrs=attrs, outputs={"OutputBox": output_box}, ) return output_box def deform_conv2d( x, offset, weight, bias=None, stride=1, padding=0, dilation=1, deformable_groups=1, groups=1, mask=None, name=None, ): r""" Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Deformable Convolution v2: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k} Deformable Convolution v1: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results `_ and `Deformable Convolutional Networks `_. Example: - Input: x shape: :math:`(N, C_{in}, H_{in}, W_{in})` weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)` offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})` mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: x (Tensor): The input image with [N, C, H, W] format. A Tensor with type float32, float64. offset (Tensor): The input coordinate offset of deformable convolution layer. A Tensor with type float32, float64. weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is the number of output channels, g is the number of groups, kH is the filter's height, kW is the filter's width. bias (Tensor, optional): The bias with shape [M,]. Default: None. stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: 1. padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: 0. dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: 1. deformable_groups (int): The number of deformable group partitions. Default: 1. groups (int, optonal): The groups number of the deformable conv layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: 1. mask (Tensor, optional): The input mask of deformable convolution layer. A Tensor with type float32, float64. It should be None when you use deformable convolution v1. Default: None. name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Tensor: 4-D Tensor storing the deformable convolution result.\ A Tensor with type float32, float64. Examples: .. code-block:: python #deformable conv v2: import paddle input = paddle.rand((8, 1, 28, 28)) kh, kw = 3, 3 weight = paddle.rand((16, 1, kh, kw)) # offset shape should be [bs, 2 * kh * kw, out_h, out_w] # mask shape should be [bs, hw * hw, out_h, out_w] # In this case, for an input of 28, stride of 1 # and kernel size of 3, without padding, the output size is 26 offset = paddle.rand((8, 2 * kh * kw, 26, 26)) mask = paddle.rand((8, kh * kw, 26, 26)) out = paddle.vision.ops.deform_conv2d(input, offset, weight, mask=mask) print(out.shape) # returns [8, 16, 26, 26] #deformable conv v1: import paddle input = paddle.rand((8, 1, 28, 28)) kh, kw = 3, 3 weight = paddle.rand((16, 1, kh, kw)) # offset shape should be [bs, 2 * kh * kw, out_h, out_w] # In this case, for an input of 28, stride of 1 # and kernel size of 3, without padding, the output size is 26 offset = paddle.rand((8, 2 * kh * kw, 26, 26)) out = paddle.vision.ops.deform_conv2d(input, offset, weight) print(out.shape) # returns [8, 16, 26, 26] """ stride = convert_to_list(stride, 2, 'stride') padding = convert_to_list(padding, 2, 'padding') dilation = convert_to_list(dilation, 2, 'dilation') use_deform_conv2d_v1 = True if mask is None else False if in_dygraph_mode(): pre_bias = _C_ops.deformable_conv( x, offset, weight, mask, stride, padding, dilation, deformable_groups, groups, 1, ) if bias is not None: out = _add_with_axis(pre_bias, bias, axis=1) else: out = pre_bias else: check_variable_and_dtype( x, "x", ['float32', 'float64'], 'deform_conv2d' ) check_variable_and_dtype( offset, "offset", ['float32', 'float64'], 'deform_conv2d' ) num_channels = x.shape[1] helper = LayerHelper('deformable_conv', **locals()) dtype = helper.input_dtype() stride = convert_to_list(stride, 2, 'stride') padding = convert_to_list(padding, 2, 'padding') dilation = convert_to_list(dilation, 2, 'dilation') pre_bias = helper.create_variable_for_type_inference(dtype) if use_deform_conv2d_v1: op_type = 'deformable_conv_v1' inputs = { 'Input': x, 'Filter': weight, 'Offset': offset, } else: op_type = 'deformable_conv' inputs = { 'Input': x, 'Filter': weight, 'Offset': offset, 'Mask': mask, } outputs = {"Output": pre_bias} attrs = { 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'deformable_groups': deformable_groups, 'im2col_step': 1, } helper.append_op( type=op_type, inputs=inputs, outputs=outputs, attrs=attrs ) if bias is not None: out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [bias]}, outputs={'Out': [out]}, attrs={'axis': 1}, ) else: out = pre_bias return out class DeformConv2D(Layer): r""" Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Deformable Convolution v2: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k} Deformable Convolution v1: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results `_ and `Deformable Convolutional Networks `_. Example: - Input: x shape: :math:`(N, C_{in}, H_{in}, W_{in})` weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)` offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})` mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Parameters: in_channels(int): The number of input channels in the input image. out_channels(int): The number of output channels produced by the convolution. kernel_size(int|list|tuple): The size of the convolving kernel. stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must contain three integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. The default value is 1. padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the dilation_D = dilation_H = dilation_W = dilation. The default value is 1. deformable_groups (int, optional): The number of deformable group partitions. Default: deformable_groups = 1. groups(int, optional): The groups number of the Conv3D Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. The default value is 1. weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv2d. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as param_attr. If it is set to None, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None. bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. The default value is None. Attribute: **weight** (Parameter): the learnable weights of filter of this layer. **bias** (Parameter or None): the learnable bias of this layer. Shape: - x: :math:`(N, C_{in}, H_{in}, W_{in})` - offset: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})` - mask: :math:`(N, H_f * W_f, H_{out}, W_{out})` - output: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1 Examples: .. code-block:: python #deformable conv v2: import paddle input = paddle.rand((8, 1, 28, 28)) kh, kw = 3, 3 # offset shape should be [bs, 2 * kh * kw, out_h, out_w] # mask shape should be [bs, hw * hw, out_h, out_w] # In this case, for an input of 28, stride of 1 # and kernel size of 3, without padding, the output size is 26 offset = paddle.rand((8, 2 * kh * kw, 26, 26)) mask = paddle.rand((8, kh * kw, 26, 26)) deform_conv = paddle.vision.ops.DeformConv2D( in_channels=1, out_channels=16, kernel_size=[kh, kw]) out = deform_conv(input, offset, mask) print(out.shape) # returns [8, 16, 26, 26] #deformable conv v1: import paddle input = paddle.rand((8, 1, 28, 28)) kh, kw = 3, 3 # offset shape should be [bs, 2 * kh * kw, out_h, out_w] # mask shape should be [bs, hw * hw, out_h, out_w] # In this case, for an input of 28, stride of 1 # and kernel size of 3, without padding, the output size is 26 offset = paddle.rand((8, 2 * kh * kw, 26, 26)) deform_conv = paddle.vision.ops.DeformConv2D( in_channels=1, out_channels=16, kernel_size=[kh, kw]) out = deform_conv(input, offset) print(out.shape) # returns [8, 16, 26, 26] """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, deformable_groups=1, groups=1, weight_attr=None, bias_attr=None, ): super().__init__() assert ( weight_attr is not False ), "weight_attr should not be False in Conv." self._weight_attr = weight_attr self._bias_attr = bias_attr self._deformable_groups = deformable_groups self._groups = groups self._in_channels = in_channels self._out_channels = out_channels self._channel_dim = 1 self._stride = convert_to_list(stride, 2, 'stride') self._dilation = convert_to_list(dilation, 2, 'dilation') self._kernel_size = convert_to_list(kernel_size, 2, 'kernel_size') if in_channels % groups != 0: raise ValueError("in_channels must be divisible by groups.") self._padding = convert_to_list(padding, 2, 'padding') filter_shape = [out_channels, in_channels // groups] + self._kernel_size def _get_default_param_initializer(): filter_elem_num = np.prod(self._kernel_size) * self._in_channels std = (2.0 / filter_elem_num) ** 0.5 return Normal(0.0, std) self.weight = self.create_parameter( shape=filter_shape, attr=self._weight_attr, default_initializer=_get_default_param_initializer(), ) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._out_channels], is_bias=True ) def forward(self, x, offset, mask=None): out = deform_conv2d( x=x, offset=offset, weight=self.weight, bias=self.bias, stride=self._stride, padding=self._padding, dilation=self._dilation, deformable_groups=self._deformable_groups, groups=self._groups, mask=mask, ) return out def distribute_fpn_proposals( fpn_rois, min_level, max_level, refer_level, refer_scale, pixel_offset=False, rois_num=None, name=None, ): r""" In Feature Pyramid Networks (FPN) models, it is needed to distribute all proposals into different FPN level, with respect to scale of the proposals, the referring scale and the referring level. Besides, to restore the order of proposals, we return an array which indicates the original index of rois in current proposals. To compute FPN level for each roi, the formula is given as follows: .. math:: roi\_scale &= \sqrt{BBoxArea(fpn\_roi)} \\ level &= floor(\log(\frac{roi\_scale}{refer\_scale}) + refer\_level) where BBoxArea is a function to compute the area of each roi. Args: fpn_rois (Tensor): The input fpn_rois. 2-D Tensor with shape [N, 4] and data type can be float32 or float64. min_level (int): The lowest level of FPN layer where the proposals come from. max_level (int): The highest level of FPN layer where the proposals come from. refer_level (int): The referring level of FPN layer with specified scale. refer_scale (int): The referring scale of FPN layer with specified level. pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of image shape will be 1. 'False' by default. rois_num (Tensor, optional): 1-D Tensor contains the number of RoIs in each image. The shape is [B] and data type is int32. B is the number of images. If rois_num not None, it will return a list of 1-D Tensor. Each element is the output RoIs' number of each image on the corresponding level and the shape is [B]. None by default. name (str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: - multi_rois (List), The proposals in each FPN level. It is a list of 2-D Tensor with shape [M, 4], where M is and data type is same as `fpn_rois` . The length is max_level-min_level+1. - restore_ind (Tensor), The index used to restore the order of fpn_rois. It is a 2-D Tensor with shape [N, 1] , where N is the number of total rois. The data type is int32. - rois_num_per_level (List), A list of 1-D Tensor and each Tensor is the RoIs' number in each image on the corresponding level. The shape is [B] and data type of int32, where B is the number of images. Examples: .. code-block:: python import paddle fpn_rois = paddle.rand((10, 4)) rois_num = paddle.to_tensor([3, 1, 4, 2], dtype=paddle.int32) multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals( fpn_rois=fpn_rois, min_level=2, max_level=5, refer_level=4, refer_scale=224, rois_num=rois_num) """ num_lvl = max_level - min_level + 1 if in_dygraph_mode(): assert ( rois_num is not None ), "rois_num should not be None in dygraph mode." ( multi_rois, rois_num_per_level, restore_ind, ) = _C_ops.distribute_fpn_proposals( fpn_rois, rois_num, min_level, max_level, refer_level, refer_scale, pixel_offset, ) return multi_rois, restore_ind, rois_num_per_level else: check_variable_and_dtype( fpn_rois, 'fpn_rois', ['float32', 'float64'], 'distribute_fpn_proposals', ) helper = LayerHelper('distribute_fpn_proposals', **locals()) dtype = helper.input_dtype('fpn_rois') multi_rois = [ helper.create_variable_for_type_inference(dtype) for i in range(num_lvl) ] restore_ind = helper.create_variable_for_type_inference(dtype='int32') inputs = {'FpnRois': fpn_rois} outputs = { 'MultiFpnRois': multi_rois, 'RestoreIndex': restore_ind, } if rois_num is not None: inputs['RoisNum'] = rois_num rois_num_per_level = [ helper.create_variable_for_type_inference(dtype='int32') for i in range(num_lvl) ] outputs['MultiLevelRoIsNum'] = rois_num_per_level else: rois_num_per_level = None helper.append_op( type='distribute_fpn_proposals', inputs=inputs, outputs=outputs, attrs={ 'min_level': min_level, 'max_level': max_level, 'refer_level': refer_level, 'refer_scale': refer_scale, 'pixel_offset': pixel_offset, }, ) return multi_rois, restore_ind, rois_num_per_level def read_file(filename, name=None): """ Reads and outputs the bytes contents of a file as a uint8 Tensor with one dimension. Args: filename (str): Path of the file to be read. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A uint8 tensor. Examples: .. code-block:: python import cv2 import paddle fake_img = (paddle.rand((400, 300, 3)).numpy() * 255).astype('uint8') cv2.imwrite('fake.jpg', fake_img) img_bytes = paddle.vision.ops.read_file('fake.jpg') print(img_bytes.shape) # [142915] """ if in_dygraph_mode(): return _legacy_C_ops.read_file('filename', filename) else: inputs = {} attrs = {'filename': filename} helper = LayerHelper("read_file", **locals()) out = helper.create_variable_for_type_inference('uint8') helper.append_op( type="read_file", inputs=inputs, attrs=attrs, outputs={"Out": out} ) return out def decode_jpeg(x, mode='unchanged', name=None): """ Decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor. Optionally converts the image to the desired format. The values of the output tensor are uint8 between 0 and 255. Args: x (Tensor): A one dimensional uint8 tensor containing the raw bytes of the JPEG image. mode (str, optional): The read mode used for optionally converting the image. Default: 'unchanged'. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A decoded image tensor with shape (imge_channels, image_height, image_width) Examples: .. code-block:: python # required: gpu import cv2 import numpy as np import paddle fake_img = (np.random.random( (400, 300, 3)) * 255).astype('uint8') cv2.imwrite('fake.jpg', fake_img) img_bytes = paddle.vision.ops.read_file('fake.jpg') img = paddle.vision.ops.decode_jpeg(img_bytes) print(img.shape) """ if in_dygraph_mode(): return _C_ops.decode_jpeg(x, mode, _current_expected_place()) else: inputs = {'X': x} attrs = {"mode": mode} helper = LayerHelper("decode_jpeg", **locals()) out = helper.create_variable_for_type_inference('uint8') helper.append_op( type="decode_jpeg", inputs=inputs, attrs=attrs, outputs={"Out": out} ) return out def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None): """ Position sensitive region of interest pooling (also known as PSROIPooling) is to perform position-sensitive average pooling on regions of interest specified by input. It performs on inputs of nonuniform sizes to obtain fixed-size feature maps. PSROIPooling is proposed by R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details. Args: x (Tensor): Input features with shape (N, C, H, W). The data type can be float32 or float64. boxes (Tensor): Box coordinates of ROIs (Regions of Interest) to pool over. It should be a 2-D Tensor with shape (num_rois, 4). Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. boxes_num (Tensor): The number of boxes contained in each picture in the batch. output_size (int|Tuple(int, int)) The pooled output size(H, W), data type is int32. If int, H and W are both equal to output_size. spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: 4-D Tensor. The pooled ROIs with shape (num_rois, output_channels, pooled_h, pooled_w). The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input. Examples: .. code-block:: python import paddle x = paddle.uniform([2, 490, 28, 28], dtype='float32') boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32') boxes_num = paddle.to_tensor([1, 2], dtype='int32') pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0) print(pool_out.shape) # [3, 10, 7, 7] """ check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool') if isinstance(output_size, int): output_size = (output_size, output_size) pooled_height, pooled_width = output_size assert len(x.shape) == 4, "Input features with shape should be (N, C, H, W)" if pooled_height * pooled_width == 0: raise ValueError('output_size should not contain 0.') output_channels = int(x.shape[1] / (pooled_height * pooled_width)) if in_dygraph_mode(): return _C_ops.psroi_pool( x, boxes, boxes_num, pooled_height, pooled_width, output_channels, spatial_scale, ) else: helper = LayerHelper('psroi_pool', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='psroi_pool', inputs={'X': x, 'ROIs': boxes}, outputs={'Out': out}, attrs={ 'output_channels': output_channels, 'spatial_scale': spatial_scale, 'pooled_height': pooled_height, 'pooled_width': pooled_width, }, ) return out class PSRoIPool(Layer): """ This interface is used to construct a callable object of the ``PSRoIPool`` class. Please refer to :ref:`api_paddle_vision_ops_psroi_pool`. Args: output_size (int|Tuple(int, int)) The pooled output size(H, W), data type is int32. If int, H and W are both equal to output_size. spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. Shape: - x: 4-D Tensor with shape (N, C, H, W). - boxes: 2-D Tensor with shape (num_rois, 4). - boxes_num: 1-D Tensor. - output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w). The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input. Returns: None. Examples: .. code-block:: python import paddle psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0) x = paddle.uniform([2, 490, 28, 28], dtype='float32') boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32') boxes_num = paddle.to_tensor([1, 2], dtype='int32') pool_out = psroi_module(x, boxes, boxes_num) print(pool_out.shape) # [3, 10, 7, 7] """ def __init__(self, output_size, spatial_scale=1.0): super().__init__() self.output_size = output_size self.spatial_scale = spatial_scale def forward(self, x, boxes, boxes_num): return psroi_pool( x, boxes, boxes_num, self.output_size, self.spatial_scale ) def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None): """ This operator implements the roi_pooling layer. Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w) 2. Finding the largest value in each section 3. Copying these max values to the output buffer For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn. Args: x (Tensor): input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. boxes (Tensor): boxes (Regions of Interest) to pool over. 2D-Tensor with the shape of [num_boxes,4]. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. boxes_num (Tensor): the number of RoIs in each image, data type is int32. output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Default: None. Returns: pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]]. Examples: .. code-block:: python import paddle from paddle.vision.ops import roi_pool data = paddle.rand([1, 256, 32, 32]) boxes = paddle.rand([3, 4]) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 boxes_num = paddle.to_tensor([3]).astype('int32') pool_out = roi_pool(data, boxes, boxes_num=boxes_num, output_size=3) assert pool_out.shape == [3, 256, 3, 3], '' """ check_type(output_size, 'output_size', (int, tuple), 'roi_pool') if isinstance(output_size, int): output_size = (output_size, output_size) pooled_height, pooled_width = output_size if in_dygraph_mode(): assert ( boxes_num is not None ), "boxes_num should not be None in dygraph mode." return _C_ops.roi_pool( x, boxes, boxes_num, pooled_height, pooled_width, spatial_scale ) else: check_variable_and_dtype(x, 'x', ['float32'], 'roi_pool') check_variable_and_dtype(boxes, 'boxes', ['float32'], 'roi_pool') helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) argmaxes = helper.create_variable_for_type_inference(dtype='int32') inputs = { "X": x, "ROIs": boxes, } if boxes_num is not None: inputs['RoisNum'] = boxes_num helper.append_op( type="roi_pool", inputs=inputs, outputs={"Out": pool_out, "Argmax": argmaxes}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale, }, ) return pool_out class RoIPool(Layer): """ This interface is used to construct a callable object of the `RoIPool` class. Please refer to :ref:`api_paddle_vision_ops_roi_pool`. Args: output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. Returns: pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]]. Examples: .. code-block:: python import paddle from paddle.vision.ops import RoIPool data = paddle.rand([1, 256, 32, 32]) boxes = paddle.rand([3, 4]) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 boxes_num = paddle.to_tensor([3]).astype('int32') roi_pool = RoIPool(output_size=(4, 3)) pool_out = roi_pool(data, boxes, boxes_num) assert pool_out.shape == [3, 256, 4, 3], '' """ def __init__(self, output_size, spatial_scale=1.0): super().__init__() self._output_size = output_size self._spatial_scale = spatial_scale def forward(self, x, boxes, boxes_num): return roi_pool( x=x, boxes=boxes, boxes_num=boxes_num, output_size=self._output_size, spatial_scale=self._spatial_scale, ) def extra_repr(self): main_str = 'output_size={_output_size}, spatial_scale={_spatial_scale}' return main_str.format(**self.__dict__) def roi_align( x, boxes, boxes_num, output_size, spatial_scale=1.0, sampling_ratio=-1, aligned=True, name=None, ): """ Implementing the roi_align layer. Region of Interest (RoI) Align operator (also known as RoI Align) is to perform bilinear interpolation on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height. Location remains the origin result. In each ROI bin, the value of the four regularly sampled locations are computed directly through bilinear interpolation. The output is the mean of four locations. Thus avoid the misaligned problem. Args: x (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. boxes (Tensor): Boxes (RoIs, Regions of Interest) to pool over. It should be a 2-D Tensor of shape (num_boxes, 4). The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. boxes_num (Tensor): The number of boxes contained in each picture in the batch, the data type is int32. output_size (int or Tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. sampling_ratio (int32, optional): number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If <= 0, then an adaptive number of grid points are used (computed as ``ceil(roi_width / output_width)``, and likewise for height). Default: -1. aligned (bool, optional): If False, use the legacy implementation. If True, pixel shift the box coordinates it by -0.5 for a better alignment with the two neighboring pixel indices. This version is used in Detectron2. Default: True. name(str, optional): For detailed information, please refer to : ref:`api_guide_Name`. Usually name is no need to set and None by default. Default: None. Returns: The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,\ channels, pooled_h, pooled_w). The data type is float32 or float64. Examples: .. code-block:: python import paddle from paddle.vision.ops import roi_align data = paddle.rand([1, 256, 32, 32]) boxes = paddle.rand([3, 4]) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 boxes_num = paddle.to_tensor([3]).astype('int32') align_out = roi_align(data, boxes, boxes_num, output_size=3) assert align_out.shape == [3, 256, 3, 3] """ check_type(output_size, 'output_size', (int, tuple), 'roi_align') if isinstance(output_size, int): output_size = (output_size, output_size) pooled_height, pooled_width = output_size if in_dygraph_mode(): assert ( boxes_num is not None ), "boxes_num should not be None in dygraph mode." return _C_ops.roi_align( x, boxes, boxes_num, pooled_height, pooled_width, spatial_scale, sampling_ratio, aligned, ) else: check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'roi_align') check_variable_and_dtype( boxes, 'boxes', ['float32', 'float64'], 'roi_align' ) helper = LayerHelper('roi_align', **locals()) dtype = helper.input_dtype() align_out = helper.create_variable_for_type_inference(dtype) inputs = { "X": x, "ROIs": boxes, } if boxes_num is not None: inputs['RoisNum'] = boxes_num helper.append_op( type="roi_align", inputs=inputs, outputs={"Out": align_out}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale, "sampling_ratio": sampling_ratio, "aligned": aligned, }, ) return align_out class RoIAlign(Layer): """ This interface is used to construct a callable object of the `RoIAlign` class. Please refer to :ref:`api_paddle_vision_ops_roi_align`. Args: output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. Returns: The output of ROIAlign operator is a 4-D tensor with \ shape (num_boxes, channels, pooled_h, pooled_w). Examples: .. code-block:: python import paddle from paddle.vision.ops import RoIAlign data = paddle.rand([1, 256, 32, 32]) boxes = paddle.rand([3, 4]) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 boxes_num = paddle.to_tensor([3]).astype('int32') roi_align = RoIAlign(output_size=(4, 3)) align_out = roi_align(data, boxes, boxes_num) assert align_out.shape == [3, 256, 4, 3] """ def __init__(self, output_size, spatial_scale=1.0): super().__init__() self._output_size = output_size self._spatial_scale = spatial_scale def forward(self, x, boxes, boxes_num, aligned=True): return roi_align( x=x, boxes=boxes, boxes_num=boxes_num, output_size=self._output_size, spatial_scale=self._spatial_scale, aligned=aligned, ) class ConvNormActivation(Sequential): """ Configurable block used for Convolution-Normalzation-Activation blocks. This code is based on the torchvision code with modifications. You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L68 Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block kernel_size: (int|list|tuple, optional): Size of the convolving kernel. Default: 3 stride (int|list|tuple, optional): Stride of the convolution. Default: 1 padding (int|str|tuple|list, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation`` groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 norm_layer (Callable[..., paddle.nn.Layer], optional): Norm layer that will be stacked on top of the convolutiuon layer. If ``None`` this layer wont be used. Default: ``paddle.nn.BatchNorm2D`` activation_layer (Callable[..., paddle.nn.Layer], optional): Activation function which will be stacked on top of the normalization layer (if not ``None``), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``paddle.nn.ReLU`` dilation (int): Spacing between kernel elements. Default: 1 bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``. """ def __init__( self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, norm_layer=BatchNorm2D, activation_layer=ReLU, dilation=1, bias=None, ): if padding is None: padding = (kernel_size - 1) // 2 * dilation if bias is None: bias = norm_layer is None layers = [ Conv2D( in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias_attr=bias, ) ] if norm_layer is not None: layers.append(norm_layer(out_channels)) if activation_layer is not None: layers.append(activation_layer()) super().__init__(*layers) def nms( boxes, iou_threshold=0.3, scores=None, category_idxs=None, categories=None, top_k=None, ): r""" This operator implements non-maximum suppression. Non-maximum suppression (NMS) is used to select one bounding box out of many overlapping bounding boxes in object detection. Boxes with IoU > iou_threshold will be considered as overlapping boxes, just one with highest score can be kept. Here IoU is Intersection Over Union, which can be computed by: .. math:: IoU = \frac{intersection\_area(box1, box2)}{union\_area(box1, box2)} If scores are provided, input boxes will be sorted by their scores firstly. If category_idxs and categories are provided, NMS will be performed with a batched style, which means NMS will be applied to each category respectively and results of each category will be concated and sorted by scores. If K is provided, only the first k elements will be returned. Otherwise, all box indices sorted by scores will be returned. Args: boxes(Tensor): The input boxes data to be computed, it's a 2D-Tensor with the shape of [num_boxes, 4]. The data type is float32 or float64. Given as [[x1, y1, x2, y2], …], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. Their relation should be ``0 <= x1 < x2 && 0 <= y1 < y2``. iou_threshold(float32, optional): IoU threshold for determine overlapping boxes. Default value: 0.3. scores(Tensor, optional): Scores corresponding to boxes, it's a 1D-Tensor with shape of [num_boxes]. The data type is float32 or float64. Default: None. category_idxs(Tensor, optional): Category indices corresponding to boxes. it's a 1D-Tensor with shape of [num_boxes]. The data type is int64. Default: None. categories(List, optional): A list of unique id of all categories. The data type is int64. Default: None. top_k(int64, optional): The top K boxes who has higher score and kept by NMS preds to consider. top_k should be smaller equal than num_boxes. Default: None. Returns: Tensor: 1D-Tensor with the shape of [num_boxes]. Indices of boxes kept by NMS. Examples: .. code-block:: python import paddle boxes = paddle.rand([4, 4]).astype('float32') boxes[:, 2] = boxes[:, 0] + boxes[:, 2] boxes[:, 3] = boxes[:, 1] + boxes[:, 3] print(boxes) # Tensor(shape=[4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[0.64811575, 0.89756244, 0.86473107, 1.48552322], # [0.48085716, 0.84799081, 0.54517937, 0.86396021], # [0.62646860, 0.72901905, 1.17392159, 1.69691563], # [0.89729202, 0.46281594, 1.88733089, 0.98588502]]) out = paddle.vision.ops.nms(boxes, 0.1) print(out) # Tensor(shape=[3], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [0, 1, 3]) scores = paddle.to_tensor([0.6, 0.7, 0.4, 0.233]) categories = [0, 1, 2, 3] category_idxs = paddle.to_tensor([2, 0, 0, 3], dtype="int64") out = paddle.vision.ops.nms(boxes, 0.1, paddle.to_tensor(scores), paddle.to_tensor(category_idxs), categories, 4) print(out) # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [1, 0, 2, 3]) """ def _nms(boxes, iou_threshold): if in_dygraph_mode(): return _C_ops.nms(boxes, iou_threshold) else: helper = LayerHelper('nms', **locals()) out = helper.create_variable_for_type_inference('int64') helper.append_op( type='nms', inputs={'Boxes': boxes}, outputs={'KeepBoxesIdxs': out}, attrs={'iou_threshold': iou_threshold}, ) return out if scores is None: return _nms(boxes, iou_threshold) import paddle if category_idxs is None: sorted_global_indices = paddle.argsort(scores, descending=True) sorted_keep_boxes_indices = _nms( boxes[sorted_global_indices], iou_threshold ) return sorted_global_indices[sorted_keep_boxes_indices] if top_k is not None: assert ( top_k <= scores.shape[0] ), "top_k should be smaller equal than the number of boxes" assert ( categories is not None ), "if category_idxs is given, categories which is a list of unique id of all categories is necessary" mask = paddle.zeros_like(scores, dtype=paddle.int32) for category_id in categories: cur_category_boxes_idxs = paddle.where(category_idxs == category_id)[0] shape = cur_category_boxes_idxs.shape[0] cur_category_boxes_idxs = paddle.reshape( cur_category_boxes_idxs, [shape] ) if shape == 0: continue elif shape == 1: mask[cur_category_boxes_idxs] = 1 continue cur_category_boxes = boxes[cur_category_boxes_idxs] cur_category_scores = scores[cur_category_boxes_idxs] cur_category_sorted_indices = paddle.argsort( cur_category_scores, descending=True ) cur_category_sorted_boxes = cur_category_boxes[ cur_category_sorted_indices ] cur_category_keep_boxes_sub_idxs = cur_category_sorted_indices[ _nms(cur_category_sorted_boxes, iou_threshold) ] updates = paddle.ones_like( cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs], dtype=paddle.int32, ) mask = paddle.scatter( mask, cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs], updates, overwrite=True, ) keep_boxes_idxs = paddle.where(mask)[0] shape = keep_boxes_idxs.shape[0] keep_boxes_idxs = paddle.reshape(keep_boxes_idxs, [shape]) sorted_sub_indices = paddle.argsort( scores[keep_boxes_idxs], descending=True ) if top_k is None: return keep_boxes_idxs[sorted_sub_indices] if in_dygraph_mode(): top_k = shape if shape < top_k else top_k _, topk_sub_indices = paddle.topk(scores[keep_boxes_idxs], top_k) return keep_boxes_idxs[topk_sub_indices] return keep_boxes_idxs[sorted_sub_indices][:top_k] def generate_proposals( scores, bbox_deltas, img_size, anchors, variances, pre_nms_top_n=6000, post_nms_top_n=1000, nms_thresh=0.5, min_size=0.1, eta=1.0, pixel_offset=False, return_rois_num=False, name=None, ): """ This operation proposes RoIs according to each box with their probability to be a foreground object. And the proposals of RPN output are calculated by anchors, bbox_deltas and scores. Final proposals could be used to train detection net. For generating proposals, this operation performs following steps: 1. Transpose and resize scores and bbox_deltas in size of (H * W * A, 1) and (H * W * A, 4) 2. Calculate box locations as proposals candidates. 3. Clip boxes to image 4. Remove predicted boxes with small area. 5. Apply non-maximum suppression (NMS) to get final proposals as output. Args: scores (Tensor): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object. N is batch size, A is number of anchors, H and W are height and width of the feature map. The data type must be float32. bbox_deltas (Tensor): A 4-D Tensor with shape [N, 4*A, H, W] represents the difference between predicted box location and anchor location. The data type must be float32. img_size (Tensor): A 2-D Tensor with shape [N, 2] represents origin image shape information for N batch, including height and width of the input sizes. The data type can be float32 or float64. anchors (Tensor): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map, num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32. variances (Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format. The data type must be float32. pre_nms_top_n (float, optional): Number of total bboxes to be kept per image before NMS. `6000` by default. post_nms_top_n (float, optional): Number of total bboxes to be kept per image after NMS. `1000` by default. nms_thresh (float, optional): Threshold in NMS. The data type must be float32. `0.5` by default. min_size (float, optional): Remove predicted boxes with either height or width less than this value. `0.1` by default. eta(float, optional): Apply in adaptive NMS, only works if adaptive `threshold > 0.5`, `adaptive_threshold = adaptive_threshold * eta` in each iteration. 1.0 by default. pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of `img_size` will be 1. 'False' by default. return_rois_num (bool, optional): Whether to return `rpn_rois_num` . When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's num of each image in one batch. 'False' by default. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: - rpn_rois (Tensor): The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``. - rpn_roi_probs (Tensor): The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``. - rpn_rois_num (Tensor): Rois's num of each image in one batch. 1-D Tensor with shape ``[B,]`` while ``B`` is the batch size. And its sum equals to RoIs number ``N`` . Examples: .. code-block:: python import paddle scores = paddle.rand((2,4,5,5), dtype=paddle.float32) bbox_deltas = paddle.rand((2, 16, 5, 5), dtype=paddle.float32) img_size = paddle.to_tensor([[224.0, 224.0], [224.0, 224.0]]) anchors = paddle.rand((2,5,4,4), dtype=paddle.float32) variances = paddle.rand((2,5,10,4), dtype=paddle.float32) rois, roi_probs, roi_nums = paddle.vision.ops.generate_proposals(scores, bbox_deltas, img_size, anchors, variances, return_rois_num=True) print(rois, roi_probs, roi_nums) """ if in_dygraph_mode(): assert ( return_rois_num ), "return_rois_num should be True in dygraph mode." attrs = ( pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, eta, pixel_offset, ) rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals( scores, bbox_deltas, img_size, anchors, variances, *attrs ) return rpn_rois, rpn_roi_probs, rpn_rois_num else: helper = LayerHelper('generate_proposals_v2', **locals()) check_variable_and_dtype( scores, 'scores', ['float32'], 'generate_proposals_v2' ) check_variable_and_dtype( bbox_deltas, 'bbox_deltas', ['float32'], 'generate_proposals_v2' ) check_variable_and_dtype( img_size, 'img_size', ['float32', 'float64'], 'generate_proposals_v2', ) check_variable_and_dtype( anchors, 'anchors', ['float32'], 'generate_proposals_v2' ) check_variable_and_dtype( variances, 'variances', ['float32'], 'generate_proposals_v2' ) rpn_rois = helper.create_variable_for_type_inference( dtype=bbox_deltas.dtype ) rpn_roi_probs = helper.create_variable_for_type_inference( dtype=scores.dtype ) outputs = { 'RpnRois': rpn_rois, 'RpnRoiProbs': rpn_roi_probs, } if return_rois_num: rpn_rois_num = helper.create_variable_for_type_inference( dtype='int32' ) rpn_rois_num.stop_gradient = True outputs['RpnRoisNum'] = rpn_rois_num helper.append_op( type="generate_proposals_v2", inputs={ 'Scores': scores, 'BboxDeltas': bbox_deltas, 'ImShape': img_size, 'Anchors': anchors, 'Variances': variances, }, attrs={ 'pre_nms_topN': pre_nms_top_n, 'post_nms_topN': post_nms_top_n, 'nms_thresh': nms_thresh, 'min_size': min_size, 'eta': eta, 'pixel_offset': pixel_offset, }, outputs=outputs, ) rpn_rois.stop_gradient = True rpn_roi_probs.stop_gradient = True if not return_rois_num: rpn_rois_num = None return rpn_rois, rpn_roi_probs, rpn_rois_num def matrix_nms( bboxes, scores, score_threshold, post_threshold, nms_top_k, keep_top_k, use_gaussian=False, gaussian_sigma=2.0, background_label=0, normalized=True, return_index=False, return_rois_num=True, name=None, ): """ This operator does matrix non maximum suppression (NMS). First selects a subset of candidate bounding boxes that have higher scores than score_threshold (if provided), then the top k candidate is selected if nms_top_k is larger than -1. Score of the remaining candidate are then decayed according to the Matrix NMS scheme. Aftern NMS step, at most keep_top_k number of total bboxes are to be kept per image if keep_top_k is larger than -1. Args: bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the predicted locations of M bounding bboxes, N is the batch size. Each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax], when box size equals to 4. The data type is float32 or float64. scores (Tensor): A 3-D Tensor with shape [N, C, M] represents the predicted confidence predictions. N is the batch size, C is the class number, M is number of bounding boxes. For each category there are total M scores which corresponding M bounding boxes. Please note, M is equal to the 2nd dimension of BBoxes. The data type is float32 or float64. score_threshold (float): Threshold to filter out bounding boxes with low confidence score. post_threshold (float): Threshold to filter out bounding boxes with low confidence score AFTER decaying. nms_top_k (int): Maximum number of detections to be kept according to the confidences after the filtering detections based on score_threshold. keep_top_k (int): Number of total bboxes to be kept per image after NMS step. -1 means keeping all bboxes after NMS step. use_gaussian (bool, optional): Use Gaussian as the decay function. Default: False gaussian_sigma (float, optional): Sigma for Gaussian decay function. Default: 2.0 background_label (int, optional): The index of background label, the background label will be ignored. If set to -1, then all categories will be considered. Default: 0 normalized (bool, optional): Whether detections are normalized. Default: True return_index(bool, optional): Whether return selected index. Default: False return_rois_num(bool, optional): whether return rois_num. Default: True name(str, optional): Name of the matrix nms op. Default: None. Returns: - A tuple with three Tensor, (Out, Index, RoisNum) if return_index is True, otherwise, a tuple with two Tensor (Out, RoisNum) is returned. - Out (Tensor), A 2-D Tensor with shape [No, 6] containing the detection results. Each row has 6 values, [label, confidence, xmin, ymin, xmax, ymax] - Index (Tensor), A 2-D Tensor with shape [No, 1] containing the selected indices, which are absolute values cross batches. - rois_num (Tensor), A 1-D Tensor with shape [N] containing the number of detected boxes in each image. Examples: .. code-block:: python import paddle from paddle.vision.ops import matrix_nms boxes = paddle.rand([4, 1, 4]) boxes[..., 2] = boxes[..., 0] + boxes[..., 2] boxes[..., 3] = boxes[..., 1] + boxes[..., 3] scores = paddle.rand([4, 80, 1]) out = matrix_nms(bboxes=boxes, scores=scores, background_label=0, score_threshold=0.5, post_threshold=0.1, nms_top_k=400, keep_top_k=200, normalized=False) """ if in_dygraph_mode(): out, index, rois_num = _C_ops.matrix_nms( bboxes, scores, score_threshold, nms_top_k, keep_top_k, post_threshold, use_gaussian, gaussian_sigma, background_label, normalized, ) if not return_index: index = None if not return_rois_num: rois_num = None return out, rois_num, index else: check_variable_and_dtype( bboxes, 'BBoxes', ['float32', 'float64'], 'matrix_nms' ) check_variable_and_dtype( scores, 'Scores', ['float32', 'float64'], 'matrix_nms' ) check_type(score_threshold, 'score_threshold', float, 'matrix_nms') check_type(post_threshold, 'post_threshold', float, 'matrix_nms') check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms') check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms') check_type(normalized, 'normalized', bool, 'matrix_nms') check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms') check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms') check_type(background_label, 'background_label', int, 'matrix_nms') helper = LayerHelper('matrix_nms', **locals()) output = helper.create_variable_for_type_inference(dtype=bboxes.dtype) index = helper.create_variable_for_type_inference(dtype='int32') outputs = {'Out': output, 'Index': index} if return_rois_num: rois_num = helper.create_variable_for_type_inference(dtype='int32') outputs['RoisNum'] = rois_num helper.append_op( type="matrix_nms", inputs={'BBoxes': bboxes, 'Scores': scores}, attrs={ 'background_label': background_label, 'score_threshold': score_threshold, 'post_threshold': post_threshold, 'nms_top_k': nms_top_k, 'gaussian_sigma': gaussian_sigma, 'use_gaussian': use_gaussian, 'keep_top_k': keep_top_k, 'normalized': normalized, }, outputs=outputs, ) output.stop_gradient = True if not return_index: index = None if not return_rois_num: rois_num = None return output, rois_num, index