// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/types.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template class PoolCompute : public KernelLite { public: using param_t = operators::PoolParam; void Run() override { auto& param = *param_.get_mutable(); if (param.global_pooling) { for (size_t i = 0; i < param.ksize.size(); ++i) { param.paddings[i] = 0; param.ksize[i] = static_cast(param.x->dims()[i + 2]); } } switch (param.ksize.size()) { case 2: { if (param.pooling_type == "max") { paddle::operators::math::Pool2dFunctor< platform::CPUDeviceContext, paddle::operators::math::MaxPool, T> pool2d_forward; paddle::operators::math::MaxPool pool_process; pool2d_forward(platform::CPUDeviceContext(), param.x->raw_tensor(), param.ksize, param.strides, param.paddings, pool_process, true, false, &(param.output->raw_tensor())); } else if (param.pooling_type == "avg") { paddle::operators::math::Pool2dFunctor< platform::CPUDeviceContext, paddle::operators::math::AvgPool, T> pool2d_forward; paddle::operators::math::AvgPool pool_process; pool2d_forward(platform::CPUDeviceContext(), param.x->raw_tensor(), param.ksize, param.strides, param.paddings, pool_process, param.exclusive, param.adaptive, &(param.output->raw_tensor())); } } break; case 3: { } break; } } virtual ~PoolCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(pool2d, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::PoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();