/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" namespace phi { namespace funcs { using XPUDeviceGuard = phi::backends::xpu::XPUDeviceGuard; /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template class ConcatFunctor { public: void operator()(const XPUContext& context, const std::vector& input, int axis, phi::DenseTensor* output) { using XPUType = typename XPUTypeTrait::Type; int dev_id = context.GetPlace().GetDeviceId(); XPUDeviceGuard guard(dev_id); int num = input.size(); auto input_dims = input[0].dims(); std::vector> xdims_list(num); for (int i = 0; i < num; ++i) { std::vector tmp_dims(input_dims.size()); for (int j = 0; j < input_dims.size(); ++j) { tmp_dims[j] = input[i].dims()[j]; } xdims_list[i] = tmp_dims; } std::vector ptrs; for (int i = 0; i < num; ++i) { if (input[i].place() != context.GetPlace()) { // data not on xpu, probably on cpu. move it now phi::DenseTensor tmp_data = input[i]; context.template Alloc(&tmp_data); ptrs.push_back(reinterpret_cast(tmp_data.data())); } else { ptrs.push_back(reinterpret_cast(input[i].data())); } } context.template Alloc(output); auto r = xpu::concat(context.x_context(), ptrs, reinterpret_cast(output->data()), xdims_list, axis); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, paddle::platform::errors::External( "XPU API return wrong value[%d %s], please check whether " "Baidu Kunlun Card is properly installed.", r, XPUAPIErrorMsg[r])); } }; template class SplitFunctor { public: void operator()(const XPUContext& context, const phi::DenseTensor& input, const std::vector& ref_inputs, const int axis, std::vector* outputs) { using XPUType = typename XPUTypeTrait::Type; int dev_id = context.GetPlace().GetDeviceId(); XPUDeviceGuard guard(dev_id); auto& ins = ref_inputs; int num = ins.size(); auto input_dims = ins[0]->dims(); std::vector split_list(num); std::vector xdims_list(input_dims.size()); int total_length = 0; for (int i = 0; i < num; ++i) { split_list[i] = ins[i]->dims()[axis]; total_length += ins[i]->dims()[axis]; } for (int i = 0; i < input_dims.size(); ++i) { if (i == axis) continue; xdims_list[i] = input_dims[i]; } xdims_list[axis] = total_length; std::vector ptrs(num); for (int i = 0; i < num; ++i) { context.template Alloc(outputs->at(i)); ptrs[i] = reinterpret_cast(outputs->at(i)->data()); } phi::DenseTensor tmp_data = input; if (input.place() != context.GetPlace()) { // data not on xpu, probably on cpu. move it now context.template Alloc(&tmp_data); } auto r = xpu::split( context.x_context(), reinterpret_cast(tmp_data.data()), ptrs, xdims_list, split_list, axis); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, paddle::platform::errors::External( "XPU API return wrong value[%d %s], please check whether " "Baidu Kunlun Card is properly installed.", r, XPUAPIErrorMsg[r])); } }; #define DEFINE_XPU_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; DEFINE_XPU_FUNCTOR(float) DEFINE_XPU_FUNCTOR(phi::dtype::float16) } // namespace funcs } // namespace phi