# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from layer_function_generator import generate_layer_fn __activations__ = [ 'sigmoid', 'logsigmoid', 'exp', 'tanh', 'tanh_shrink', 'softshrink', 'sqrt', 'abs', 'ceil', 'floor', 'cos', 'sin', 'round', 'reciprocal', 'square', 'softplus', 'softsign', 'brelu', 'leaky_relu', 'soft_relu', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid', 'swish', ] __all__ = [ 'mean', 'mul', 'scale', 'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div', 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', 'elementwise_pow', 'clip', 'clip_by_norm', 'logical_and', 'logical_or', 'logical_xor', 'logical_not', 'uniform_random_batch_size_like', 'gaussian_random', 'gaussian_random_batch_size_like', 'scatter', 'sum', 'slice', 'polygon_box_transform', 'shape', 'iou_similarity', 'maxout', ] + __activations__ for _OP in set(__all__): globals()[_OP] = generate_layer_fn(_OP) __all__ += ["uniform_random"] _uniform_random_ = generate_layer_fn('uniform_random') def uniform_random(shape, dtype=None, min=None, max=None, seed=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _uniform_random_(**kwargs) uniform_random.__doc__ = _uniform_random_.__doc__ + """ Examples: >>> result = fluid.layers.uniform_random(shape=[32, 784]) """ __all__ += ['hard_shrink'] _hard_shrink_ = generate_layer_fn('hard_shrink') def hard_shrink(x, threshold=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _hard_shrink_(**kwargs) hard_shrink.__doc__ = _hard_shrink_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[784]) >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3) """ __all__ += ['cumsum'] _cum_sum_ = generate_layer_fn('cumsum') def cumsum(x, axis=None, exclusive=None, reverse=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _cum_sum_(**kwargs) cumsum.__doc__ = _cum_sum_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[32, 784]) >>> result = fluid.layers.cumsum(data, axis=0) """ __all__ += ['thresholded_relu'] _thresholded_relu_ = generate_layer_fn('thresholded_relu') def thresholded_relu(x, threshold=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val _thresholded_relu_(**kwargs) thresholded_relu.__doc__ = _thresholded_relu_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[1]) >>> result = fluid.layers.thresholded_relu(data, threshold=0.4) """